1
0
mirror of https://github.com/ppy/osu.git synced 2025-01-22 08:32:54 +08:00
osu-lazer/osu.Game/Tests/Visual/ScrollingTestContainer.cs

111 lines
4.2 KiB
C#
Raw Normal View History

// Copyright (c) ppy Pty Ltd <contact@ppy.sh>. Licensed under the MIT Licence.
// See the LICENCE file in the repository root for full licence text.
2018-11-06 14:46:36 +08:00
using osu.Framework.Allocation;
2019-02-21 18:04:31 +08:00
using osu.Framework.Bindables;
2018-11-06 14:46:36 +08:00
using osu.Framework.Graphics.Containers;
using osu.Framework.Lists;
using osu.Game.Configuration;
using osu.Game.Rulesets.Timing;
using osu.Game.Rulesets.UI.Scrolling;
using osu.Game.Rulesets.UI.Scrolling.Algorithms;
namespace osu.Game.Tests.Visual
{
/// <summary>
/// A container which provides a <see cref="IScrollingInfo"/> to children.
/// This should only be used when testing
/// </summary>
public class ScrollingTestContainer : Container
{
public SortedList<MultiplierControlPoint> ControlPoints => scrollingInfo.Algorithm.ControlPoints;
2018-11-06 14:46:36 +08:00
2019-02-28 12:31:40 +08:00
public ScrollVisualisationMethod ScrollAlgorithm
{
set => scrollingInfo.Algorithm.Algorithm = value;
}
2018-11-06 14:46:36 +08:00
2019-02-28 12:31:40 +08:00
public double TimeRange
{
set => scrollingInfo.TimeRange.Value = value;
}
public ScrollingDirection Direction
{
set => scrollingInfo.Direction.Value = value;
}
2018-11-12 18:41:06 +08:00
public IScrollingInfo ScrollingInfo => scrollingInfo;
2018-11-06 14:46:36 +08:00
[Cached(Type = typeof(IScrollingInfo))]
private readonly TestScrollingInfo scrollingInfo = new TestScrollingInfo();
public ScrollingTestContainer(ScrollingDirection direction)
{
scrollingInfo.Direction.Value = direction;
}
public void Flip() => scrollingInfo.Direction.Value = scrollingInfo.Direction.Value == ScrollingDirection.Up ? ScrollingDirection.Down : ScrollingDirection.Up;
2020-04-15 15:29:39 +08:00
public class TestScrollingInfo : IScrollingInfo
2018-11-06 14:46:36 +08:00
{
public readonly Bindable<ScrollingDirection> Direction = new Bindable<ScrollingDirection>();
IBindable<ScrollingDirection> IScrollingInfo.Direction => Direction;
public readonly Bindable<double> TimeRange = new BindableDouble(1000) { Value = 1000 };
IBindable<double> IScrollingInfo.TimeRange => TimeRange;
public readonly TestScrollAlgorithm Algorithm = new TestScrollAlgorithm();
IScrollAlgorithm IScrollingInfo.Algorithm => Algorithm;
2018-11-06 14:46:36 +08:00
}
2020-04-15 15:29:39 +08:00
public class TestScrollAlgorithm : IScrollAlgorithm
2018-11-06 14:46:36 +08:00
{
public readonly SortedList<MultiplierControlPoint> ControlPoints = new SortedList<MultiplierControlPoint>();
private IScrollAlgorithm implementation;
public TestScrollAlgorithm()
{
2018-11-12 16:36:19 +08:00
Algorithm = ScrollVisualisationMethod.Constant;
2018-11-06 14:46:36 +08:00
}
2018-11-12 16:36:19 +08:00
public ScrollVisualisationMethod Algorithm
2018-11-06 14:46:36 +08:00
{
set
{
switch (value)
{
2018-11-12 16:36:19 +08:00
case ScrollVisualisationMethod.Constant:
2018-11-06 14:46:36 +08:00
implementation = new ConstantScrollAlgorithm();
break;
2019-04-01 11:44:46 +08:00
2018-11-12 16:36:19 +08:00
case ScrollVisualisationMethod.Overlapping:
2018-11-06 14:46:36 +08:00
implementation = new OverlappingScrollAlgorithm(ControlPoints);
break;
2019-04-01 11:44:46 +08:00
2018-11-12 16:36:19 +08:00
case ScrollVisualisationMethod.Sequential:
2018-11-06 14:46:36 +08:00
implementation = new SequentialScrollAlgorithm(ControlPoints);
break;
}
}
}
Fix lifetime calculation in overlapping algorithm Changes to lifetime calculation in scrolling rulesets introduced in #7367, which aimed to account for the distance between hit objects' origin and its edge entering the scrolling area, fixed some issues with hitobjects appearing abruptly, but also regressed some other scenarios. Upon investigation, the regression was localised to the overlapping scroll algorithm. The reason for this was two-fold: * The previous code used TimeAt() to calculate the time of travel from the hit object's edge to its origin. For other algorithms, that time can be accurately reconstructed, because they don't have periods of time where there are multiple hit objects scrolling at different velocities. That invariant does not hold for the overlapping algorithm, therefore it is possible for different values to be technically correct for TimeAt(). However, the only value that matters for the adjustment is the one that's indicated by the control point that applies to the hit object origin, which can be uniquely identified. * Additionally, the offset returned (even if correct) was applied externally to the hit object's start time and passed to GetDisplayStartTime(). In the overlapping algorithm, the choice of control point used in GetDisplayStartTime() is important, since the value of the speed multiplier is read within. Externally rewinding the hit object's start time meant that in some cases the speed multiplier of the *previous* control point is applied, which led to hit objects appearing too late if the scrolling rate decreased. Because of the above, modify GetDisplayStartTime() to take the offset into account in all algorithms, and apply the adjustment correctly inside of them. The constant and sequential algorithms needed no adjustment from the previous logic, since: * the constant algorithm disregarded control points, and * the sequential algorithm would effectively rewind to time = 0, calculate the absolute distance from time = 0 to the hit object start, apply the origin offset *to the absolute distance*, and then convert back to time, applying all control points in sequence. Due to this it was impossible for control points to get mixed up while calculating. As for the overlapping algorithm, the high-level logic is as follows: * The distance that the origin has to travel is the length of the scroll plus the distance from the origin to the object edge. * The above distance divided by the scroll length gives the relative scroll lengths that the object has to travel. * As one relative scroll length takes one time range, the relative travel length multiplied by the time range gives the absolute travel time of the object origin. * Finally, the control point multiplier applicable at origin time is applied to the whole travel time. Correctness of the above is demonstrated by visual tests added before and headless unit tests of the algorithms themselves. The sequential scroll algorithm was not covered by unit tests, and remains uncovered due to floating-point inaccuracies that should be addressed separately.
2020-02-07 05:46:31 +08:00
public double GetDisplayStartTime(double originTime, float offset, double timeRange, float scrollLength)
=> implementation.GetDisplayStartTime(originTime, offset, timeRange, scrollLength);
2018-11-06 14:46:36 +08:00
public float GetLength(double startTime, double endTime, double timeRange, float scrollLength)
=> implementation.GetLength(startTime, endTime, timeRange, scrollLength);
public float PositionAt(double time, double currentTime, double timeRange, float scrollLength)
=> implementation.PositionAt(time, currentTime, timeRange, scrollLength);
2018-11-12 17:24:18 +08:00
public double TimeAt(float position, double currentTime, double timeRange, float scrollLength)
=> implementation.TimeAt(position, currentTime, timeRange, scrollLength);
2018-11-06 14:46:36 +08:00
public void Reset()
=> implementation.Reset();
}
}
}