1
0
mirror of https://github.com/ppy/osu.git synced 2024-12-14 07:42:57 +08:00
osu-lazer/osu.Game.Rulesets.Catch/Difficulty/CatchDifficultyCalculator.cs
2018-05-21 10:39:16 +08:00

162 lines
7.1 KiB
C#

// Copyright (c) 2007-2018 ppy Pty Ltd <contact@ppy.sh>.
// Licensed under the MIT Licence - https://raw.githubusercontent.com/ppy/osu/master/LICENCE
using System;
using System.Collections.Generic;
using osu.Game.Beatmaps;
using osu.Game.Rulesets.Difficulty;
using osu.Game.Rulesets.Mods;
using osu.Game.Rulesets.Catch.Objects;
using osu.Game.Rulesets.Catch.UI;
using osu.Game.Rulesets.Objects;
namespace osu.Game.Rulesets.Catch.Difficulty
{
public class CatchDifficultyCalculator : DifficultyCalculator
{
private const double star_scaling_factor = 0.145;
private const float playfield_width = CatchPlayfield.BASE_WIDTH;
private readonly List<CatchDifficultyHitObject> difficultyHitObjects = new List<CatchDifficultyHitObject>();
public CatchDifficultyCalculator(IBeatmap beatmap)
: base(beatmap)
{
}
public CatchDifficultyCalculator(IBeatmap beatmap, Mod[] mods)
: base(beatmap, mods)
{
}
public override double Calculate(Dictionary<string, double> categoryDifficulty = null)
{
difficultyHitObjects.Clear();
float circleSize = Beatmap.BeatmapInfo.BaseDifficulty.CircleSize;
float catcherWidth = (1.0f - 0.7f * (circleSize - 5) / 5) * 0.62064f * CatcherArea.CATCHER_SIZE;
float catcherWidthHalf = catcherWidth / 2;
catcherWidthHalf *= 0.8f;
foreach (var hitObject in Beatmap.HitObjects)
{
// We want to only consider fruits that contribute to the combo. Droplets are addressed as accuracy and spinners are not relevant for "skill" calculations.
if (hitObject is Fruit)
{
difficultyHitObjects.Add(new CatchDifficultyHitObject((CatchHitObject)hitObject, catcherWidthHalf));
}
if (hitObject is JuiceStream)
{
IEnumerator<HitObject> nestedHitObjectsEnumerator = hitObject.NestedHitObjects.GetEnumerator();
while (nestedHitObjectsEnumerator.MoveNext())
{
CatchHitObject objectInJuiceStream = (CatchHitObject)nestedHitObjectsEnumerator.Current;
if (!(objectInJuiceStream is TinyDroplet))
difficultyHitObjects.Add(new CatchDifficultyHitObject(objectInJuiceStream, catcherWidthHalf));
}
// Dispose the enumerator after counting all fruits.
nestedHitObjectsEnumerator.Dispose();
}
}
difficultyHitObjects.Sort((a, b) => a.BaseHitObject.StartTime.CompareTo(b.BaseHitObject.StartTime));
if (!CalculateStrainValues()) return 0;
double starRating = Math.Sqrt(CalculateDifficulty()) * star_scaling_factor;
if (categoryDifficulty != null)
{
categoryDifficulty["Aim"] = starRating;
double ar = Beatmap.BeatmapInfo.BaseDifficulty.ApproachRate;
double preEmpt = BeatmapDifficulty.DifficultyRange(ar, 1800, 1200, 450) / TimeRate;
categoryDifficulty["AR"] = preEmpt > 1200.0 ? -(preEmpt - 1800.0) / 120.0 : -(preEmpt - 1200.0) / 150.0 + 5.0;
categoryDifficulty["Max combo"] = difficultyHitObjects.Count;
}
return starRating;
}
protected bool CalculateStrainValues()
{
// Traverse hitObjects in pairs to calculate the strain value of NextHitObject from the strain value of CurrentHitObject and environment.
using (List<CatchDifficultyHitObject>.Enumerator hitObjectsEnumerator = difficultyHitObjects.GetEnumerator())
{
if (!hitObjectsEnumerator.MoveNext()) return false;
CatchDifficultyHitObject currentHitObject = hitObjectsEnumerator.Current;
// First hitObject starts at strain 1. 1 is the default for strain values, so we don't need to set it here. See DifficultyHitObject.
while (hitObjectsEnumerator.MoveNext())
{
CatchDifficultyHitObject nextHitObject = hitObjectsEnumerator.Current;
nextHitObject.CalculateStrains(currentHitObject, TimeRate);
currentHitObject = nextHitObject;
}
return true;
}
}
/// <summary>
/// In milliseconds. For difficulty calculation we will only look at the highest strain value in each time interval of size STRAIN_STEP.
/// This is to eliminate higher influence of stream over aim by simply having more HitObjects with high strain.
/// The higher this value, the less strains there will be, indirectly giving long beatmaps an advantage.
/// </summary>
private const double strain_step = 750;
/// <summary>
/// The weighting of each strain value decays to this number * it's previous value
/// </summary>
private const double decay_weight = 0.94;
protected double CalculateDifficulty()
{
// The strain step needs to be adjusted for the algorithm to be considered equal with speed changing mods
double actualStrainStep = strain_step * TimeRate;
// Find the highest strain value within each strain step
List<double> highestStrains = new List<double>();
double intervalEndTime = actualStrainStep;
double maximumStrain = 0; // We need to keep track of the maximum strain in the current interval
CatchDifficultyHitObject previousHitObject = null;
foreach (CatchDifficultyHitObject hitObject in difficultyHitObjects)
{
// While we are beyond the current interval push the currently available maximum to our strain list
while (hitObject.BaseHitObject.StartTime > intervalEndTime)
{
highestStrains.Add(maximumStrain);
// The maximum strain of the next interval is not zero by default! We need to take the last hitObject we encountered, take its strain and apply the decay
// until the beginning of the next interval.
if (previousHitObject == null)
{
maximumStrain = 0;
}
else
{
double decay = Math.Pow(CatchDifficultyHitObject.decay_base, (intervalEndTime - previousHitObject.BaseHitObject.StartTime) / 1000);
maximumStrain = previousHitObject.Strain * decay;
}
// Go to the next time interval
intervalEndTime += actualStrainStep;
}
// Obtain maximum strain
maximumStrain = Math.Max(hitObject.Strain, maximumStrain);
previousHitObject = hitObject;
}
// calculate maximun strain difficulty
double difficulty = StrainCalculator(highestStrains, decay_weight);
return difficulty;
}
}
}