// Copyright (c) 2007-2018 ppy Pty Ltd . // Licensed under the MIT Licence - https://raw.githubusercontent.com/ppy/osu/master/LICENCE using System; using System.Collections.Generic; using osu.Game.Beatmaps; using osu.Game.Rulesets.Difficulty; using osu.Game.Rulesets.Mods; using osu.Game.Rulesets.Catch.Objects; using osu.Game.Rulesets.Catch.UI; using osu.Game.Rulesets.Objects; namespace osu.Game.Rulesets.Catch.Difficulty { public class CatchDifficultyCalculator : DifficultyCalculator { private const double star_scaling_factor = 0.145; private const float playfield_width = CatchPlayfield.BASE_WIDTH; private readonly List difficultyHitObjects = new List(); public CatchDifficultyCalculator(IBeatmap beatmap) : base(beatmap) { } public CatchDifficultyCalculator(IBeatmap beatmap, Mod[] mods) : base(beatmap, mods) { } public override double Calculate(Dictionary categoryDifficulty = null) { difficultyHitObjects.Clear(); float circleSize = Beatmap.BeatmapInfo.BaseDifficulty.CircleSize; float catcherWidth = (1.0f - 0.7f * (circleSize - 5) / 5) * 0.62064f * CatcherArea.CATCHER_SIZE; float catcherWidthHalf = catcherWidth / 2; catcherWidthHalf *= 0.8f; foreach (var hitObject in Beatmap.HitObjects) { // We want to only consider fruits that contribute to the combo. Droplets are addressed as accuracy and spinners are not relevant for "skill" calculations. if (hitObject is Fruit) { difficultyHitObjects.Add(new CatchDifficultyHitObject((CatchHitObject)hitObject, catcherWidthHalf)); } if (hitObject is JuiceStream) { IEnumerator nestedHitObjectsEnumerator = hitObject.NestedHitObjects.GetEnumerator(); while (nestedHitObjectsEnumerator.MoveNext()) { CatchHitObject objectInJuiceStream = (CatchHitObject)nestedHitObjectsEnumerator.Current; if (!(objectInJuiceStream is TinyDroplet)) difficultyHitObjects.Add(new CatchDifficultyHitObject(objectInJuiceStream, catcherWidthHalf)); } // Dispose the enumerator after counting all fruits. nestedHitObjectsEnumerator.Dispose(); } } difficultyHitObjects.Sort((a, b) => a.BaseHitObject.StartTime.CompareTo(b.BaseHitObject.StartTime)); if (!CalculateStrainValues()) return 0; double starRating = Math.Sqrt(CalculateDifficulty()) * star_scaling_factor; if (categoryDifficulty != null) { categoryDifficulty["Aim"] = starRating; double ar = Beatmap.BeatmapInfo.BaseDifficulty.ApproachRate; double preEmpt = BeatmapDifficulty.DifficultyRange(ar, 1800, 1200, 450) / TimeRate; categoryDifficulty["AR"] = preEmpt > 1200.0 ? -(preEmpt - 1800.0) / 120.0 : -(preEmpt - 1200.0) / 150.0 + 5.0; categoryDifficulty["Max combo"] = difficultyHitObjects.Count; } return starRating; } protected bool CalculateStrainValues() { // Traverse hitObjects in pairs to calculate the strain value of NextHitObject from the strain value of CurrentHitObject and environment. using (List.Enumerator hitObjectsEnumerator = difficultyHitObjects.GetEnumerator()) { if (!hitObjectsEnumerator.MoveNext()) return false; CatchDifficultyHitObject currentHitObject = hitObjectsEnumerator.Current; // First hitObject starts at strain 1. 1 is the default for strain values, so we don't need to set it here. See DifficultyHitObject. while (hitObjectsEnumerator.MoveNext()) { CatchDifficultyHitObject nextHitObject = hitObjectsEnumerator.Current; nextHitObject.CalculateStrains(currentHitObject, TimeRate); currentHitObject = nextHitObject; } return true; } } /// /// In milliseconds. For difficulty calculation we will only look at the highest strain value in each time interval of size STRAIN_STEP. /// This is to eliminate higher influence of stream over aim by simply having more HitObjects with high strain. /// The higher this value, the less strains there will be, indirectly giving long beatmaps an advantage. /// private const double strain_step = 750; /// /// The weighting of each strain value decays to this number * it's previous value /// private const double decay_weight = 0.94; protected double CalculateDifficulty() { // The strain step needs to be adjusted for the algorithm to be considered equal with speed changing mods double actualStrainStep = strain_step * TimeRate; // Find the highest strain value within each strain step List highestStrains = new List(); double intervalEndTime = actualStrainStep; double maximumStrain = 0; // We need to keep track of the maximum strain in the current interval CatchDifficultyHitObject previousHitObject = null; foreach (CatchDifficultyHitObject hitObject in difficultyHitObjects) { // While we are beyond the current interval push the currently available maximum to our strain list while (hitObject.BaseHitObject.StartTime > intervalEndTime) { highestStrains.Add(maximumStrain); // The maximum strain of the next interval is not zero by default! We need to take the last hitObject we encountered, take its strain and apply the decay // until the beginning of the next interval. if (previousHitObject == null) { maximumStrain = 0; } else { double decay = Math.Pow(CatchDifficultyHitObject.decay_base, (intervalEndTime - previousHitObject.BaseHitObject.StartTime) / 1000); maximumStrain = previousHitObject.Strain * decay; } // Go to the next time interval intervalEndTime += actualStrainStep; } // Obtain maximum strain maximumStrain = Math.Max(hitObject.Strain, maximumStrain); previousHitObject = hitObject; } // calculate maximun strain difficulty double difficulty = StrainCalculator(highestStrains, decay_weight); return difficulty; } } }