1
0
mirror of https://github.com/ppy/osu.git synced 2024-11-15 13:47:24 +08:00
osu-lazer/osu.Game/Screens/Edit/EditorClock.cs
Dean Herbert 1005b7ac85
Fix incorrect test assumption in TestSceneEditorClock
I don't know what this test was trying to do, but it was wrong. Any
offset which is applied should be invisible to the clock's final
`CurrentTime` (and to the user).
2023-10-06 16:43:28 +09:00

310 lines
11 KiB
C#

// Copyright (c) ppy Pty Ltd <contact@ppy.sh>. Licensed under the MIT Licence.
// See the LICENCE file in the repository root for full licence text.
#nullable disable
using System;
using System.Diagnostics;
using System.Linq;
using osu.Framework.Audio.Track;
using osu.Framework.Bindables;
using osu.Framework.Graphics;
using osu.Framework.Graphics.Containers;
using osu.Framework.Graphics.Transforms;
using osu.Framework.Timing;
using osu.Framework.Utils;
using osu.Game.Beatmaps;
using osu.Game.Beatmaps.ControlPoints;
namespace osu.Game.Screens.Edit
{
/// <summary>
/// A decoupled clock which adds editor-specific functionality, such as snapping to a user-defined beat divisor.
/// </summary>
public partial class EditorClock : CompositeComponent, IFrameBasedClock, IAdjustableClock, ISourceChangeableClock
{
public IBindable<Track> Track => track;
private readonly Bindable<Track> track = new Bindable<Track>();
public double TrackLength => track.Value?.IsLoaded == true ? track.Value.Length : 60000;
public ControlPointInfo ControlPointInfo => Beatmap.ControlPointInfo;
public IBeatmap Beatmap { get; set; }
private readonly BindableBeatDivisor beatDivisor;
private readonly FramedBeatmapClock underlyingClock;
private bool playbackFinished;
public IBindable<bool> SeekingOrStopped => seekingOrStopped;
private readonly Bindable<bool> seekingOrStopped = new Bindable<bool>(true);
/// <summary>
/// Whether a seek is currently in progress. True for the duration of a seek performed via <see cref="SeekSmoothlyTo"/>.
/// </summary>
public bool IsSeeking { get; private set; }
public EditorClock(IBeatmap beatmap = null, BindableBeatDivisor beatDivisor = null)
{
Beatmap = beatmap ?? new Beatmap();
this.beatDivisor = beatDivisor ?? new BindableBeatDivisor();
underlyingClock = new FramedBeatmapClock(applyOffsets: true, requireDecoupling: true);
AddInternal(underlyingClock);
}
/// <summary>
/// Seek to the closest snappable beat from a time.
/// </summary>
/// <param name="position">The raw position which should be seeked around.</param>
/// <returns>Whether the seek could be performed.</returns>
public bool SeekSnapped(double position)
{
var timingPoint = ControlPointInfo.TimingPointAt(position);
double beatSnapLength = timingPoint.BeatLength / beatDivisor.Value;
// We will be snapping to beats within the timing point
position -= timingPoint.Time;
// Determine the index from the current timing point of the closest beat to position
int closestBeat = (int)Math.Round(position / beatSnapLength);
position = timingPoint.Time + closestBeat * beatSnapLength;
// Depending on beatSnapLength, we may snap to a beat that is beyond timingPoint's end time, but we want to instead snap to
// the next timing point's start time
var nextTimingPoint = ControlPointInfo.TimingPoints.FirstOrDefault(t => t.Time > timingPoint.Time);
if (position > nextTimingPoint?.Time)
position = nextTimingPoint.Time;
return Seek(position);
}
/// <summary>
/// Seeks backwards by one beat length.
/// </summary>
/// <param name="snapped">Whether to snap to the closest beat after seeking.</param>
/// <param name="amount">The relative amount (magnitude) which should be seeked.</param>
public void SeekBackward(bool snapped = false, double amount = 1) => seek(-1, snapped, amount + (IsRunning ? 1.5 : 0));
/// <summary>
/// Seeks forwards by one beat length.
/// </summary>
/// <param name="snapped">Whether to snap to the closest beat after seeking.</param>
/// <param name="amount">The relative amount (magnitude) which should be seeked.</param>
public void SeekForward(bool snapped = false, double amount = 1) => seek(1, snapped, amount);
private void seek(int direction, bool snapped, double amount = 1)
{
double current = CurrentTimeAccurate;
if (amount <= 0) throw new ArgumentException("Value should be greater than zero", nameof(amount));
var timingPoint = ControlPointInfo.TimingPointAt(current);
if (direction < 0 && timingPoint.Time == current)
// When going backwards and we're at the boundary of two timing points, we compute the seek distance with the timing point which we are seeking into
timingPoint = ControlPointInfo.TimingPointAt(current - 1);
double seekAmount = timingPoint.BeatLength / beatDivisor.Value * amount;
double seekTime = current + seekAmount * direction;
if (!snapped || ControlPointInfo.TimingPoints.Count == 0)
{
SeekSmoothlyTo(seekTime);
return;
}
// We will be snapping to beats within timingPoint
seekTime -= timingPoint.Time;
// Determine the index from timingPoint of the closest beat to seekTime, accounting for scrolling direction
int closestBeat;
if (direction > 0)
closestBeat = (int)Math.Floor(seekTime / seekAmount);
else
closestBeat = (int)Math.Ceiling(seekTime / seekAmount);
seekTime = timingPoint.Time + closestBeat * seekAmount;
// limit forward seeking to only up to the next timing point's start time.
var nextTimingPoint = ControlPointInfo.TimingPoints.FirstOrDefault(t => t.Time > timingPoint.Time);
if (seekTime > nextTimingPoint?.Time)
seekTime = nextTimingPoint.Time;
// Due to the rounding above, we may end up on the current beat. This will effectively cause 0 seeking to happen, but we don't want this.
// Instead, we'll go to the next beat in the direction when this is the case
if (Precision.AlmostEquals(current, seekTime, 0.5f))
{
closestBeat += direction > 0 ? 1 : -1;
seekTime = timingPoint.Time + closestBeat * seekAmount;
}
if (seekTime < timingPoint.Time && !ReferenceEquals(timingPoint, ControlPointInfo.TimingPoints.First()))
seekTime = timingPoint.Time;
SeekSmoothlyTo(seekTime);
}
/// <summary>
/// The current time of this clock, include any active transform seeks performed via <see cref="SeekSmoothlyTo"/>.
/// </summary>
public double CurrentTimeAccurate =>
Transforms.OfType<TransformSeek>().FirstOrDefault()?.EndValue ?? CurrentTime;
public double CurrentTime => underlyingClock.CurrentTime;
public void Reset()
{
ClearTransforms();
underlyingClock.Reset();
}
public void Start()
{
ClearTransforms();
if (playbackFinished)
underlyingClock.Seek(0);
underlyingClock.Start();
}
public void Stop()
{
seekingOrStopped.Value = true;
underlyingClock.Stop();
}
public bool Seek(double position)
{
seekingOrStopped.Value = IsSeeking = true;
ClearTransforms();
// Ensure the sought point is within the boundaries
position = Math.Clamp(position, 0, TrackLength);
return underlyingClock.Seek(position);
}
/// <summary>
/// Seek smoothly to the provided destination.
/// Use <see cref="Seek"/> to perform an immediate seek.
/// </summary>
/// <param name="seekDestination"></param>
public void SeekSmoothlyTo(double seekDestination)
{
seekingOrStopped.Value = true;
if (IsRunning)
Seek(seekDestination);
else
{
transformSeekTo(seekDestination, transform_time, Easing.OutQuint);
}
}
public void ResetSpeedAdjustments() => underlyingClock.ResetSpeedAdjustments();
double IAdjustableClock.Rate
{
get => underlyingClock.Rate;
set => underlyingClock.Rate = value;
}
double IClock.Rate => underlyingClock.Rate;
public bool IsRunning => underlyingClock.IsRunning;
public void ProcessFrame()
{
// Noop to ensure an external consumer doesn't process the internal clock an extra time.
}
public double ElapsedFrameTime => underlyingClock.ElapsedFrameTime;
public double FramesPerSecond => underlyingClock.FramesPerSecond;
public void ChangeSource(IClock source)
{
track.Value = source as Track;
underlyingClock.ChangeSource(source);
}
public IClock Source => underlyingClock.Source;
private const double transform_time = 300;
protected override void Update()
{
base.Update();
// EditorClock wasn't being added in many places. This gives us more certainty that it is.
Debug.Assert(underlyingClock.LoadState > LoadState.NotLoaded);
playbackFinished = CurrentTime >= TrackLength;
if (playbackFinished)
{
if (IsRunning)
underlyingClock.Stop();
if (CurrentTime > TrackLength)
underlyingClock.Seek(TrackLength);
}
updateSeekingState();
}
private void updateSeekingState()
{
if (seekingOrStopped.Value)
{
IsSeeking &= Transforms.Any();
if (!IsRunning)
{
// seeking in the editor can happen while the track isn't running.
// in this case we always want to expose ourselves as seeking (to avoid sample playback).
return;
}
// we are either running a seek tween or doing an immediate seek.
// in the case of an immediate seek the seeking bool will be set to false after one update.
// this allows for silencing hit sounds and the likes.
seekingOrStopped.Value = IsSeeking;
}
}
private void transformSeekTo(double seek, double duration = 0, Easing easing = Easing.None)
=> this.TransformTo(this.PopulateTransform(new TransformSeek(), Math.Clamp(seek, 0, TrackLength), duration, easing));
private double currentTime
{
get => underlyingClock.CurrentTime;
set => underlyingClock.Seek(value);
}
private class TransformSeek : Transform<double, EditorClock>
{
public override string TargetMember => nameof(currentTime);
protected override void Apply(EditorClock clock, double time) => clock.currentTime = valueAt(time);
private double valueAt(double time)
{
if (time < StartTime) return StartValue;
if (time >= EndTime) return EndValue;
return Interpolation.ValueAt(time, StartValue, EndValue, StartTime, EndTime, Easing);
}
protected override void ReadIntoStartValue(EditorClock clock) => StartValue = clock.currentTime;
}
}
}