1
0
mirror of https://github.com/ppy/osu.git synced 2025-01-23 03:02:55 +08:00

Rewrite Welzl's algorithm to use no recursion

This commit is contained in:
OliBomby 2024-09-24 20:15:03 +02:00
parent 2d95c0b0bb
commit 796fc948e1

View File

@ -255,7 +255,7 @@ namespace osu.Game.Utils
} }
// Function to check whether a circle encloses the given points // Function to check whether a circle encloses the given points
private static bool isValidCircle((Vector2, float) c, ReadOnlySpan<Vector2> points) private static bool isValidCircle((Vector2, float) c, List<Vector2> points)
{ {
// Iterating through all the points to check whether the points lie inside the circle or not // Iterating through all the points to check whether the points lie inside the circle or not
foreach (Vector2 p in points) foreach (Vector2 p in points)
@ -267,12 +267,12 @@ namespace osu.Game.Utils
} }
// Function to return the minimum enclosing circle for N <= 3 // Function to return the minimum enclosing circle for N <= 3
private static (Vector2, float) minCircleTrivial(ReadOnlySpan<Vector2> points) private static (Vector2, float) minCircleTrivial(List<Vector2> points)
{ {
if (points.Length > 3) if (points.Count > 3)
throw new ArgumentException("Number of points must be at most 3", nameof(points)); throw new ArgumentException("Number of points must be at most 3", nameof(points));
switch (points.Length) switch (points.Count)
{ {
case 0: case 0:
return (new Vector2(0, 0), 0); return (new Vector2(0, 0), 0);
@ -299,45 +299,6 @@ namespace osu.Game.Utils
return circleFrom(points[0], points[1], points[2]); return circleFrom(points[0], points[1], points[2]);
} }
// Returns the MEC using Welzl's algorithm
// Takes a set of input points P and a set R
// points on the circle boundary.
// n represents the number of points in P that are not yet processed.
private static (Vector2, float) welzlHelper(List<Vector2> points, ReadOnlySpan<Vector2> r, int n)
{
Span<Vector2> r2 = stackalloc Vector2[3];
int rLength = r.Length;
r.CopyTo(r2);
while (true)
{
// Base case when all points processed or |R| = 3
if (n == 0 || rLength == 3) return minCircleTrivial(r2[..rLength]);
// Pick a random point randomly
int idx = RNG.Next(n);
Vector2 p = points[idx];
// Put the picked point at the end of P since it's more efficient than
// deleting from the middle of the list
(points[idx], points[n - 1]) = (points[n - 1], points[idx]);
// Get the MEC circle d from the set of points P - {p}
var d = welzlHelper(points, r2[..rLength], n - 1);
// If d contains p, return d
if (isInside(d, p)) return d;
// Otherwise, must be on the boundary of the MEC
// Stackalloc to avoid allocations. It's safe to assume that the length of r will be at most 3
r2[rLength] = p;
rLength++;
// Return the MEC for P - {p} and R U {p}
n--;
}
}
#endregion #endregion
/// <summary> /// <summary>
@ -348,8 +309,61 @@ namespace osu.Game.Utils
{ {
// Using Welzl's algorithm to find the minimum enclosing circle // Using Welzl's algorithm to find the minimum enclosing circle
// https://www.geeksforgeeks.org/minimum-enclosing-circle-using-welzls-algorithm/ // https://www.geeksforgeeks.org/minimum-enclosing-circle-using-welzls-algorithm/
List<Vector2> pCopy = points.ToList(); List<Vector2> P = points.ToList();
return welzlHelper(pCopy, Array.Empty<Vector2>(), pCopy.Count);
var stack = new Stack<(Vector2?, int)>();
var r = new List<Vector2>(3);
(Vector2, float) d = (Vector2.Zero, 0);
stack.Push((null, P.Count));
while (stack.Count > 0)
{
// n represents the number of points in P that are not yet processed.
// p represents the point that was randomly picked to process.
(Vector2? p, int n) = stack.Pop();
if (!p.HasValue)
{
// Base case when all points processed or |R| = 3
if (n == 0 || r.Count == 3)
{
d = minCircleTrivial(r);
continue;
}
// Pick a random point randomly
int idx = RNG.Next(n);
p = P[idx];
// Put the picked point at the end of P since it's more efficient than
// deleting from the middle of the list
(P[idx], P[n - 1]) = (P[n - 1], P[idx]);
// Schedule processing of p after we get the MEC circle d from the set of points P - {p}
stack.Push((p, n));
// Get the MEC circle d from the set of points P - {p}
stack.Push((null, n - 1));
}
else
{
// If d contains p, return d
if (isInside(d, p.Value))
continue;
// Remove points from R that were added in a deeper recursion
// |R| = |P| - |stack| - n
int removeCount = r.Count - (P.Count - stack.Count - n);
r.RemoveRange(r.Count - removeCount, removeCount);
// Otherwise, must be on the boundary of the MEC
r.Add(p.Value);
// Return the MEC for P - {p} and R U {p}
stack.Push((null, n - 1));
}
}
return d;
} }
/// <summary> /// <summary>