mirror of
https://github.com/ppy/osu.git
synced 2024-12-16 10:23:04 +08:00
Rewrite Welzl's algorithm to use no recursion
This commit is contained in:
parent
2d95c0b0bb
commit
796fc948e1
@ -255,7 +255,7 @@ namespace osu.Game.Utils
|
||||
}
|
||||
|
||||
// Function to check whether a circle encloses the given points
|
||||
private static bool isValidCircle((Vector2, float) c, ReadOnlySpan<Vector2> points)
|
||||
private static bool isValidCircle((Vector2, float) c, List<Vector2> points)
|
||||
{
|
||||
// Iterating through all the points to check whether the points lie inside the circle or not
|
||||
foreach (Vector2 p in points)
|
||||
@ -267,12 +267,12 @@ namespace osu.Game.Utils
|
||||
}
|
||||
|
||||
// Function to return the minimum enclosing circle for N <= 3
|
||||
private static (Vector2, float) minCircleTrivial(ReadOnlySpan<Vector2> points)
|
||||
private static (Vector2, float) minCircleTrivial(List<Vector2> points)
|
||||
{
|
||||
if (points.Length > 3)
|
||||
if (points.Count > 3)
|
||||
throw new ArgumentException("Number of points must be at most 3", nameof(points));
|
||||
|
||||
switch (points.Length)
|
||||
switch (points.Count)
|
||||
{
|
||||
case 0:
|
||||
return (new Vector2(0, 0), 0);
|
||||
@ -299,45 +299,6 @@ namespace osu.Game.Utils
|
||||
return circleFrom(points[0], points[1], points[2]);
|
||||
}
|
||||
|
||||
// Returns the MEC using Welzl's algorithm
|
||||
// Takes a set of input points P and a set R
|
||||
// points on the circle boundary.
|
||||
// n represents the number of points in P that are not yet processed.
|
||||
private static (Vector2, float) welzlHelper(List<Vector2> points, ReadOnlySpan<Vector2> r, int n)
|
||||
{
|
||||
Span<Vector2> r2 = stackalloc Vector2[3];
|
||||
int rLength = r.Length;
|
||||
r.CopyTo(r2);
|
||||
|
||||
while (true)
|
||||
{
|
||||
// Base case when all points processed or |R| = 3
|
||||
if (n == 0 || rLength == 3) return minCircleTrivial(r2[..rLength]);
|
||||
|
||||
// Pick a random point randomly
|
||||
int idx = RNG.Next(n);
|
||||
Vector2 p = points[idx];
|
||||
|
||||
// Put the picked point at the end of P since it's more efficient than
|
||||
// deleting from the middle of the list
|
||||
(points[idx], points[n - 1]) = (points[n - 1], points[idx]);
|
||||
|
||||
// Get the MEC circle d from the set of points P - {p}
|
||||
var d = welzlHelper(points, r2[..rLength], n - 1);
|
||||
|
||||
// If d contains p, return d
|
||||
if (isInside(d, p)) return d;
|
||||
|
||||
// Otherwise, must be on the boundary of the MEC
|
||||
// Stackalloc to avoid allocations. It's safe to assume that the length of r will be at most 3
|
||||
r2[rLength] = p;
|
||||
rLength++;
|
||||
|
||||
// Return the MEC for P - {p} and R U {p}
|
||||
n--;
|
||||
}
|
||||
}
|
||||
|
||||
#endregion
|
||||
|
||||
/// <summary>
|
||||
@ -348,8 +309,61 @@ namespace osu.Game.Utils
|
||||
{
|
||||
// Using Welzl's algorithm to find the minimum enclosing circle
|
||||
// https://www.geeksforgeeks.org/minimum-enclosing-circle-using-welzls-algorithm/
|
||||
List<Vector2> pCopy = points.ToList();
|
||||
return welzlHelper(pCopy, Array.Empty<Vector2>(), pCopy.Count);
|
||||
List<Vector2> P = points.ToList();
|
||||
|
||||
var stack = new Stack<(Vector2?, int)>();
|
||||
var r = new List<Vector2>(3);
|
||||
(Vector2, float) d = (Vector2.Zero, 0);
|
||||
|
||||
stack.Push((null, P.Count));
|
||||
|
||||
while (stack.Count > 0)
|
||||
{
|
||||
// n represents the number of points in P that are not yet processed.
|
||||
// p represents the point that was randomly picked to process.
|
||||
(Vector2? p, int n) = stack.Pop();
|
||||
|
||||
if (!p.HasValue)
|
||||
{
|
||||
// Base case when all points processed or |R| = 3
|
||||
if (n == 0 || r.Count == 3)
|
||||
{
|
||||
d = minCircleTrivial(r);
|
||||
continue;
|
||||
}
|
||||
|
||||
// Pick a random point randomly
|
||||
int idx = RNG.Next(n);
|
||||
p = P[idx];
|
||||
|
||||
// Put the picked point at the end of P since it's more efficient than
|
||||
// deleting from the middle of the list
|
||||
(P[idx], P[n - 1]) = (P[n - 1], P[idx]);
|
||||
|
||||
// Schedule processing of p after we get the MEC circle d from the set of points P - {p}
|
||||
stack.Push((p, n));
|
||||
// Get the MEC circle d from the set of points P - {p}
|
||||
stack.Push((null, n - 1));
|
||||
}
|
||||
else
|
||||
{
|
||||
// If d contains p, return d
|
||||
if (isInside(d, p.Value))
|
||||
continue;
|
||||
|
||||
// Remove points from R that were added in a deeper recursion
|
||||
// |R| = |P| - |stack| - n
|
||||
int removeCount = r.Count - (P.Count - stack.Count - n);
|
||||
r.RemoveRange(r.Count - removeCount, removeCount);
|
||||
|
||||
// Otherwise, must be on the boundary of the MEC
|
||||
r.Add(p.Value);
|
||||
// Return the MEC for P - {p} and R U {p}
|
||||
stack.Push((null, n - 1));
|
||||
}
|
||||
}
|
||||
|
||||
return d;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
|
Loading…
Reference in New Issue
Block a user