1
0
mirror of https://github.com/ppy/osu.git synced 2025-01-10 15:32:56 +08:00
osu-lazer/osu.Game/Rulesets/Scoring/DrainingHealthProcessor.cs

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

218 lines
8.5 KiB
C#
Raw Normal View History

// Copyright (c) ppy Pty Ltd <contact@ppy.sh>. Licensed under the MIT Licence.
// See the LICENCE file in the repository root for full licence text.
2022-06-17 15:37:17 +08:00
#nullable disable
using System;
using System.Collections.Generic;
using System.Linq;
using osu.Game.Beatmaps;
using osu.Game.Rulesets.Judgements;
using osu.Game.Rulesets.Objects;
2020-05-11 00:32:38 +08:00
using osu.Game.Utils;
namespace osu.Game.Rulesets.Scoring
{
2019-12-25 20:22:46 +08:00
/// <summary>
2019-12-27 11:46:35 +08:00
/// A <see cref="HealthProcessor"/> which continuously drains health.<br />
/// At HP=0, the minimum health reached for a perfect play is 95%.<br />
/// At HP=5, the minimum health reached for a perfect play is 70%.<br />
/// At HP=10, the minimum health reached for a perfect play is 30%.
2019-12-25 20:22:46 +08:00
/// </summary>
public partial class DrainingHealthProcessor : HealthProcessor
{
/// <summary>
/// A reasonable allowable error for the minimum health offset from <see cref="targetMinimumHealth"/>. A 1% error is unnoticeable.
/// </summary>
private const double minimum_health_error = 0.01;
2019-12-27 11:46:35 +08:00
/// <summary>
/// The minimum health target at an HP drain rate of 0.
/// </summary>
private const double min_health_target = 0.99;
2019-12-27 11:46:35 +08:00
/// <summary>
/// The minimum health target at an HP drain rate of 5.
/// </summary>
private const double mid_health_target = 0.9;
2019-12-27 11:46:35 +08:00
/// <summary>
/// The minimum health target at an HP drain rate of 10.
/// </summary>
private const double max_health_target = 0.4;
2019-12-27 11:46:35 +08:00
2023-11-13 12:46:47 +08:00
/// <summary>
/// The drain rate as a proportion of the total health drained per millisecond.
/// </summary>
2023-11-21 18:18:02 +08:00
public double DrainRate { get; private set; }
2023-11-13 12:46:47 +08:00
/// <summary>
/// The beatmap.
/// </summary>
protected IBeatmap Beatmap { get; private set; }
2023-11-13 12:46:47 +08:00
/// <summary>
/// The time at which health starts draining.
/// </summary>
protected readonly double DrainStartTime;
/// <summary>
/// An amount of lenience to apply to the drain rate.
/// </summary>
protected readonly double DrainLenience;
private readonly List<HealthIncrease> healthIncreases = new List<HealthIncrease>();
2023-11-13 12:46:47 +08:00
private double gameplayEndTime;
private double targetMinimumHealth;
2020-05-11 00:32:38 +08:00
private PeriodTracker noDrainPeriodTracker;
2019-12-25 20:22:46 +08:00
/// <summary>
/// Creates a new <see cref="DrainingHealthProcessor"/>.
/// </summary>
/// <param name="drainStartTime">The time after which draining should begin.</param>
2020-06-21 17:05:26 +08:00
/// <param name="drainLenience">A lenience to apply to the default drain rate.<br />
/// A value of 0 uses the default drain rate.<br />
/// A value of 0.5 halves the drain rate.<br />
/// A value of 1 completely removes drain.</param>
public DrainingHealthProcessor(double drainStartTime, double drainLenience = 0)
{
2023-11-13 12:46:47 +08:00
DrainStartTime = drainStartTime;
DrainLenience = Math.Clamp(drainLenience, 0, 1);
}
protected override void Update()
{
base.Update();
2020-05-11 00:32:38 +08:00
if (noDrainPeriodTracker?.IsInAny(Time.Current) == true)
return;
// When jumping in and out of gameplay time within a single frame, health should only be drained for the period within the gameplay time
2023-11-13 12:46:47 +08:00
double lastGameplayTime = Math.Clamp(Time.Current - Time.Elapsed, DrainStartTime, gameplayEndTime);
double currentGameplayTime = Math.Clamp(Time.Current, DrainStartTime, gameplayEndTime);
2023-11-13 12:46:47 +08:00
if (DrainLenience < 1)
Health.Value -= DrainRate * (currentGameplayTime - lastGameplayTime);
}
public override void ApplyBeatmap(IBeatmap beatmap)
{
2023-11-13 12:46:47 +08:00
Beatmap = beatmap;
if (beatmap.HitObjects.Count > 0)
gameplayEndTime = beatmap.HitObjects[^1].GetEndTime();
noDrainPeriodTracker = new PeriodTracker(
beatmap.Breaks.Select(breakPeriod =>
new Period(
beatmap.HitObjects
.Select(hitObject => hitObject.GetEndTime())
.Where(endTime => endTime <= breakPeriod.StartTime)
.DefaultIfEmpty(double.MinValue)
.Last(),
beatmap.HitObjects
.Select(hitObject => hitObject.StartTime)
.Where(startTime => startTime >= breakPeriod.EndTime)
.DefaultIfEmpty(double.MaxValue)
.First()
)));
targetMinimumHealth = IBeatmapDifficultyInfo.DifficultyRange(beatmap.Difficulty.DrainRate, min_health_target, mid_health_target, max_health_target);
2020-06-21 18:31:00 +08:00
// Add back a portion of the amount of HP to be drained, depending on the lenience requested.
2023-11-13 12:46:47 +08:00
targetMinimumHealth += DrainLenience * (1 - targetMinimumHealth);
2020-06-21 18:31:00 +08:00
// Ensure the target HP is within an acceptable range.
targetMinimumHealth = Math.Clamp(targetMinimumHealth, 0, 1);
base.ApplyBeatmap(beatmap);
}
protected override void ApplyResultInternal(JudgementResult result)
{
base.ApplyResultInternal(result);
if (IsSimulating && !result.Type.IsBonus())
{
healthIncreases.Add(new HealthIncrease(
result.HitObject.GetEndTime() + result.TimeOffset,
2023-12-23 22:36:15 +08:00
GetHealthIncreaseFor(result)));
}
}
protected override bool CheckDefaultFailCondition(JudgementResult result)
{
if (result.Judgement.MaxResult.IsBonus() || result.Type == HitResult.IgnoreHit)
return false;
return base.CheckDefaultFailCondition(result);
}
protected override void Reset(bool storeResults)
{
base.Reset(storeResults);
if (storeResults)
2023-11-13 12:46:47 +08:00
DrainRate = ComputeDrainRate();
2019-12-27 11:39:25 +08:00
healthIncreases.Clear();
}
2023-11-13 12:46:47 +08:00
protected virtual double ComputeDrainRate()
{
if (healthIncreases.Count <= 1)
return 0;
int adjustment = 1;
double result = 1;
// Although we expect the following loop to converge within 30 iterations (health within 1/2^31 accuracy of the target),
// we'll still keep a safety measure to avoid infinite loops by detecting overflows.
while (adjustment > 0)
{
double currentHealth = 1;
double lowestHealth = 1;
int currentBreak = 0;
for (int i = 0; i < healthIncreases.Count; i++)
{
double currentTime = healthIncreases[i].Time;
double lastTime = i > 0 ? healthIncreases[i - 1].Time : DrainStartTime;
while (currentBreak < Beatmap.Breaks.Count && Beatmap.Breaks[currentBreak].EndTime <= currentTime)
{
// If two hitobjects are separated by a break period, there is no drain for the full duration between the hitobjects.
// This differs from legacy (version < 8) beatmaps which continue draining until the break section is entered,
// but this shouldn't have a noticeable impact in practice.
lastTime = currentTime;
currentBreak++;
}
// Apply health adjustments
currentHealth -= (currentTime - lastTime) * result;
lowestHealth = Math.Min(lowestHealth, currentHealth);
2023-12-23 22:36:15 +08:00
currentHealth = Math.Min(1, currentHealth + healthIncreases[i].Amount);
// Common scenario for when the drain rate is definitely too harsh
if (lowestHealth < 0)
break;
}
// Stop if the resulting health is within a reasonable offset from the target
if (Math.Abs(lowestHealth - targetMinimumHealth) <= minimum_health_error)
break;
2019-12-26 16:54:31 +08:00
// This effectively works like a binary search - each iteration the search space moves closer to the target, but may exceed it.
adjustment *= 2;
result += 1.0 / adjustment * Math.Sign(lowestHealth - targetMinimumHealth);
}
return result;
}
2023-12-23 22:36:15 +08:00
private record struct HealthIncrease(double Time, double Amount);
}
}