1
0
mirror of https://github.com/ppy/osu.git synced 2025-01-04 23:02:59 +08:00
osu-lazer/osu.Game/Rulesets/Mods/ModAdaptiveSpeed.cs

270 lines
11 KiB
C#

// Copyright (c) ppy Pty Ltd <contact@ppy.sh>. Licensed under the MIT Licence.
// See the LICENCE file in the repository root for full licence text.
using System;
using System.Collections.Generic;
using System.Linq;
using osu.Framework.Audio;
using osu.Framework.Bindables;
using osu.Framework.Utils;
using osu.Game.Beatmaps;
using osu.Game.Configuration;
using osu.Game.Rulesets.Judgements;
using osu.Game.Rulesets.Objects;
using osu.Game.Rulesets.Objects.Drawables;
using osu.Game.Rulesets.Scoring;
using osu.Game.Rulesets.UI;
namespace osu.Game.Rulesets.Mods
{
public class ModAdaptiveSpeed : Mod, IApplicableToRate, IApplicableToDrawableHitObject, IApplicableToBeatmap, IUpdatableByPlayfield
{
public override string Name => "Adaptive Speed";
public override string Acronym => "AS";
public override string Description => "Let track speed adapt to you.";
public override ModType Type => ModType.Fun;
public override double ScoreMultiplier => 1;
public override bool ValidForMultiplayer => false;
public override bool ValidForMultiplayerAsFreeMod => false;
public override Type[] IncompatibleMods => new[] { typeof(ModRateAdjust), typeof(ModTimeRamp), typeof(ModAutoplay) };
[SettingSource("Initial rate", "The starting speed of the track")]
public BindableNumber<double> InitialRate { get; } = new BindableDouble
{
MinValue = 0.5,
MaxValue = 2,
Default = 1,
Value = 1,
Precision = 0.01
};
[SettingSource("Adjust pitch", "Should pitch be adjusted with speed")]
public BindableBool AdjustPitch { get; } = new BindableBool
{
Default = true,
Value = true
};
/// <summary>
/// The instantaneous rate of the track.
/// Every frame this mod will attempt to smoothly adjust this to meet <see cref="targetRate"/>.
/// </summary>
public BindableNumber<double> SpeedChange { get; } = new BindableDouble
{
MinValue = min_allowable_rate,
MaxValue = max_allowable_rate,
Default = 1,
Value = 1
};
// The two constants below denote the maximum allowable range of rates that `SpeedChange` can take.
// The range is purposefully wider than the range of values that `InitialRate` allows
// in order to give some leeway for change even when extreme initial rates are chosen.
private const double min_allowable_rate = 0.4d;
private const double max_allowable_rate = 2.5d;
// The two constants below denote the maximum allowable change in rate caused by a single hit
// This prevents sudden jolts caused by a badly-timed hit.
private const double min_allowable_rate_change = 0.9d;
private const double max_allowable_rate_change = 1.11d;
// Apply a fixed rate change when missing, allowing the player to catch up when the rate is too fast.
private const double rate_change_on_miss = 0.95d;
private IAdjustableAudioComponent? track;
private double targetRate = 1d;
/// <summary>
/// The number of most recent track rates (approximated from how early/late each object was hit relative to the previous object)
/// which should be averaged to calculate <see cref="targetRate"/>.
/// </summary>
private const int recent_rate_count = 8;
/// <summary>
/// Stores the most recent <see cref="recent_rate_count"/> approximated track rates
/// which are averaged to calculate the value of <see cref="targetRate"/>.
/// </summary>
/// <remarks>
/// This list is used as a double-ended queue with fixed capacity
/// (items can be enqueued/dequeued at either end of the list).
/// When time is elapsing forward, items are dequeued from the start and enqueued onto the end of the list.
/// When time is being rewound, items are dequeued from the end and enqueued onto the start of the list.
/// </remarks>
/// <example>
/// <para>
/// The track rate approximation is calculated as follows:
/// </para>
/// <para>
/// Consider a hitobject which ends at 1000ms, and assume that its preceding hitobject ends at 500ms.
/// This gives a time difference of 1000 - 500 = 500ms.
/// </para>
/// <para>
/// Now assume that the user hit this object at 980ms rather than 1000ms.
/// When compared to the preceding hitobject, this gives 980 - 500 = 480ms.
/// </para>
/// <para>
/// With the above assumptions, the player is rushing / hitting early, which means that the track should speed up to match.
/// Therefore, the approximated target rate for this object would be equal to 500 / 480 * <see cref="InitialRate"/>.
/// </para>
/// </example>
private readonly List<double> recentRates = Enumerable.Repeat(1d, recent_rate_count).ToList();
/// <summary>
/// For each given <see cref="HitObject"/> in the map, this dictionary maps the object onto the latest end time of any other object
/// that precedes the end time of the given object.
/// This can be loosely interpreted as the end time of the preceding hit object in rulesets that do not have overlapping hit objects.
/// </summary>
private readonly Dictionary<HitObject, double> precedingEndTimes = new Dictionary<HitObject, double>();
/// <summary>
/// For each given <see cref="HitObject"/> in the map, this dictionary maps the object onto the track rate dequeued from
/// <see cref="recentRates"/> (i.e. the oldest value in the queue) when the object is hit. If the hit is then reverted,
/// the mapped value can be re-introduced to <see cref="recentRates"/> to properly rewind the queue.
/// </summary>
private readonly Dictionary<HitObject, double> ratesForRewinding = new Dictionary<HitObject, double>();
public ModAdaptiveSpeed()
{
InitialRate.BindValueChanged(val =>
{
SpeedChange.Value = val.NewValue;
targetRate = val.NewValue;
});
AdjustPitch.BindValueChanged(adjustPitchChanged);
}
public void ApplyToTrack(IAdjustableAudioComponent track)
{
this.track = track;
InitialRate.TriggerChange();
AdjustPitch.TriggerChange();
recentRates.Clear();
recentRates.AddRange(Enumerable.Repeat(InitialRate.Value, recent_rate_count));
}
public void ApplyToSample(IAdjustableAudioComponent sample)
{
sample.AddAdjustment(AdjustableProperty.Frequency, SpeedChange);
}
public void Update(Playfield playfield)
{
SpeedChange.Value = Interpolation.DampContinuously(SpeedChange.Value, targetRate, 50, playfield.Clock.ElapsedFrameTime);
}
public double ApplyToRate(double time, double rate = 1) => rate * InitialRate.Value;
public void ApplyToDrawableHitObject(DrawableHitObject drawable)
{
drawable.OnNewResult += (_, result) =>
{
if (ratesForRewinding.ContainsKey(result.HitObject)) return;
if (!shouldProcessResult(result)) return;
ratesForRewinding.Add(result.HitObject, recentRates[0]);
recentRates.RemoveAt(0);
recentRates.Add(Math.Clamp(getRelativeRateChange(result) * SpeedChange.Value, min_allowable_rate, max_allowable_rate));
updateTargetRate();
};
drawable.OnRevertResult += (_, result) =>
{
if (!ratesForRewinding.ContainsKey(result.HitObject)) return;
if (!shouldProcessResult(result)) return;
recentRates.Insert(0, ratesForRewinding[result.HitObject]);
ratesForRewinding.Remove(result.HitObject);
recentRates.RemoveAt(recentRates.Count - 1);
updateTargetRate();
};
}
public void ApplyToBeatmap(IBeatmap beatmap)
{
var hitObjects = getAllApplicableHitObjects(beatmap.HitObjects).ToList();
var endTimes = hitObjects.Select(x => x.GetEndTime()).OrderBy(x => x).Distinct().ToList();
foreach (HitObject hitObject in hitObjects)
{
int index = endTimes.BinarySearch(hitObject.GetEndTime());
if (index < 0) index = ~index; // BinarySearch returns the next larger element in bitwise complement if there's no exact match
index -= 1;
if (index >= 0)
precedingEndTimes.Add(hitObject, endTimes[index]);
}
}
private void adjustPitchChanged(ValueChangedEvent<bool> adjustPitchSetting)
{
track?.RemoveAdjustment(adjustmentForPitchSetting(adjustPitchSetting.OldValue), SpeedChange);
track?.AddAdjustment(adjustmentForPitchSetting(adjustPitchSetting.NewValue), SpeedChange);
}
private AdjustableProperty adjustmentForPitchSetting(bool adjustPitchSettingValue)
=> adjustPitchSettingValue ? AdjustableProperty.Frequency : AdjustableProperty.Tempo;
private IEnumerable<HitObject> getAllApplicableHitObjects(IEnumerable<HitObject> hitObjects)
{
foreach (var hitObject in hitObjects)
{
if (!(hitObject.HitWindows is HitWindows.EmptyHitWindows))
yield return hitObject;
foreach (HitObject nested in getAllApplicableHitObjects(hitObject.NestedHitObjects))
yield return nested;
}
}
private bool shouldProcessResult(JudgementResult result)
{
if (!result.Type.AffectsAccuracy()) return false;
if (!precedingEndTimes.ContainsKey(result.HitObject)) return false;
return true;
}
private double getRelativeRateChange(JudgementResult result)
{
if (!result.IsHit)
return rate_change_on_miss;
double prevEndTime = precedingEndTimes[result.HitObject];
return Math.Clamp(
(result.HitObject.GetEndTime() - prevEndTime) / (result.TimeAbsolute - prevEndTime),
min_allowable_rate_change,
max_allowable_rate_change
);
}
/// <summary>
/// Update <see cref="targetRate"/> based on the values in <see cref="recentRates"/>.
/// </summary>
private void updateTargetRate()
{
// Compare values in recentRates to see how consistent the player's speed is
// If the player hits half of the notes too fast and the other half too slow: Abs(consistency) = 0
// If the player hits all their notes too fast or too slow: Abs(consistency) = recent_rate_count - 1
int consistency = 0;
for (int i = 1; i < recentRates.Count; i++)
{
consistency += Math.Sign(recentRates[i] - recentRates[i - 1]);
}
// Scale the rate adjustment based on consistency
targetRate = Interpolation.Lerp(targetRate, recentRates.Average(), Math.Abs(consistency) / (recent_rate_count - 1d));
}
}
}