1
0
mirror of https://github.com/ppy/osu.git synced 2025-01-25 09:43:15 +08:00
osu-lazer/osu.Game.Rulesets.Catch/Edit/Blueprints/Components/EditablePath.cs
2022-06-17 16:37:17 +09:00

208 lines
7.9 KiB
C#

// Copyright (c) ppy Pty Ltd <contact@ppy.sh>. Licensed under the MIT Licence.
// See the LICENCE file in the repository root for full licence text.
#nullable disable
using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Linq;
using JetBrains.Annotations;
using osu.Framework.Allocation;
using osu.Framework.Graphics;
using osu.Framework.Graphics.Containers;
using osu.Framework.Graphics.Primitives;
using osu.Game.Rulesets.Catch.Objects;
using osu.Game.Rulesets.Edit;
using osu.Game.Rulesets.Objects.Types;
using osu.Game.Rulesets.UI.Scrolling;
using osuTK;
namespace osu.Game.Rulesets.Catch.Edit.Blueprints.Components
{
public abstract class EditablePath : CompositeDrawable
{
public int PathId => path.InvalidationID;
public IReadOnlyList<JuiceStreamPathVertex> Vertices => path.Vertices;
public int VertexCount => path.Vertices.Count;
protected readonly Func<float, double> PositionToTime;
protected IReadOnlyList<VertexState> VertexStates => vertexStates;
private readonly JuiceStreamPath path = new JuiceStreamPath();
// Invariant: `path.Vertices.Count == vertexStates.Count`
private readonly List<VertexState> vertexStates = new List<VertexState>
{
new VertexState { IsFixed = true }
};
private readonly List<VertexState> previousVertexStates = new List<VertexState>();
[Resolved(CanBeNull = true)]
[CanBeNull]
private IBeatSnapProvider beatSnapProvider { get; set; }
protected EditablePath(Func<float, double> positionToTime)
{
PositionToTime = positionToTime;
Anchor = Anchor.BottomLeft;
}
public void UpdateFrom(ScrollingHitObjectContainer hitObjectContainer, JuiceStream hitObject)
{
while (path.Vertices.Count < InternalChildren.Count)
RemoveInternal(InternalChildren[^1]);
while (InternalChildren.Count < path.Vertices.Count)
AddInternal(new VertexPiece());
double timeToYFactor = -hitObjectContainer.LengthAtTime(hitObject.StartTime, hitObject.StartTime + 1);
for (int i = 0; i < VertexCount; i++)
{
var piece = (VertexPiece)InternalChildren[i];
var vertex = path.Vertices[i];
piece.Position = new Vector2(vertex.X, (float)(vertex.Time * timeToYFactor));
piece.UpdateFrom(vertexStates[i]);
}
}
public void InitializeFromHitObject(JuiceStream hitObject)
{
var sliderPath = hitObject.Path;
path.ConvertFromSliderPath(sliderPath, hitObject.Velocity);
// If the original slider path has non-linear type segments, resample the vertices at nested hit object times to reduce the number of vertices.
if (sliderPath.ControlPoints.Any(p => p.Type != null && p.Type != PathType.Linear))
{
path.ResampleVertices(hitObject.NestedHitObjects
.Skip(1).TakeWhile(h => !(h is Fruit)) // Only droplets in the first span are used.
.Select(h => h.StartTime - hitObject.StartTime));
}
vertexStates.Clear();
vertexStates.AddRange(path.Vertices.Select((_, i) => new VertexState
{
IsFixed = i == 0
}));
}
public void UpdateHitObjectFromPath(JuiceStream hitObject)
{
// The SV setting may need to be changed for the current path.
var svBindable = hitObject.DifficultyControlPoint.SliderVelocityBindable;
double svToVelocityFactor = hitObject.Velocity / svBindable.Value;
double requiredVelocity = path.ComputeRequiredVelocity();
// The value is pre-rounded here because setting it to the bindable will rounded to the nearest value
// but it should be always rounded up to satisfy the required minimum velocity condition.
//
// This is rounded to integers instead of using the precision of the bindable
// because it results in a smaller number of non-redundant control points.
//
// The value is clamped here by the bindable min and max values.
// In case the required velocity is too large, the path is not preserved.
svBindable.Value = Math.Ceiling(requiredVelocity / svToVelocityFactor);
path.ConvertToSliderPath(hitObject.Path, hitObject.LegacyConvertedY, hitObject.Velocity);
if (beatSnapProvider == null) return;
double endTime = hitObject.StartTime + path.Duration;
double snappedEndTime = beatSnapProvider.SnapTime(endTime, hitObject.StartTime);
hitObject.Path.ExpectedDistance.Value = (snappedEndTime - hitObject.StartTime) * hitObject.Velocity;
}
public Vector2 ToRelativePosition(Vector2 screenSpacePosition)
{
return ToLocalSpace(screenSpacePosition) - new Vector2(0, DrawHeight);
}
protected override bool ComputeIsMaskedAway(RectangleF maskingBounds) => false;
protected int AddVertex(double time, float x)
{
int index = path.InsertVertex(time);
path.SetVertexPosition(index, x);
vertexStates.Insert(index, new VertexState());
correctFixedVertexPositions();
Debug.Assert(vertexStates.Count == VertexCount);
return index;
}
protected bool RemoveVertex(int index)
{
if (index < 0 || index >= path.Vertices.Count)
return false;
if (vertexStates[index].IsFixed)
return false;
path.RemoveVertices((_, i) => i == index);
vertexStates.RemoveAt(index);
if (vertexStates.Count == 0)
vertexStates.Add(new VertexState());
Debug.Assert(vertexStates.Count == VertexCount);
return true;
}
protected void MoveSelectedVertices(double timeDelta, float xDelta)
{
// Because the vertex list may be reordered due to time change, the state list must be reordered as well.
previousVertexStates.Clear();
previousVertexStates.AddRange(vertexStates);
// We will recreate the path from scratch. Note that `Clear` leaves the first vertex.
int vertexCount = VertexCount;
path.Clear();
vertexStates.RemoveRange(1, vertexCount - 1);
for (int i = 1; i < vertexCount; i++)
{
var state = previousVertexStates[i];
double time = state.VertexBeforeChange.Time;
if (state.IsSelected)
time += timeDelta;
int newIndex = path.InsertVertex(Math.Max(0, time));
vertexStates.Insert(newIndex, state);
}
// First, restore positions of the non-selected vertices.
for (int i = 0; i < vertexCount; i++)
{
if (!vertexStates[i].IsSelected && !vertexStates[i].IsFixed)
path.SetVertexPosition(i, vertexStates[i].VertexBeforeChange.X);
}
// Then, move the selected vertices.
for (int i = 0; i < vertexCount; i++)
{
if (vertexStates[i].IsSelected && !vertexStates[i].IsFixed)
path.SetVertexPosition(i, vertexStates[i].VertexBeforeChange.X + xDelta);
}
// Finally, correct the position of fixed vertices.
correctFixedVertexPositions();
}
private void correctFixedVertexPositions()
{
for (int i = 0; i < VertexCount; i++)
{
if (vertexStates[i].IsFixed)
path.SetVertexPosition(i, vertexStates[i].VertexBeforeChange.X);
}
}
}
}