1
0
mirror of https://github.com/ppy/osu.git synced 2024-11-06 22:07:40 +08:00
osu-lazer/osu.Game.Mode.Osu/Objects/SliderCurve.cs

143 lines
5.2 KiB
C#

// Copyright (c) 2007-2016 ppy Pty Ltd <contact@ppy.sh>.
// Licensed under the MIT Licence - https://raw.githubusercontent.com/ppy/osu-framework/master/LICENCE
using System.Collections.Generic;
using OpenTK;
using System.Linq;
using System.Diagnostics;
using osu.Framework.MathUtils;
namespace osu.Game.Modes.Osu.Objects
{
public class SliderCurve
{
public double Length;
public List<Vector2> Path;
public CurveTypes CurveType;
private List<Vector2> calculatedPath = new List<Vector2>();
private List<double> cumulativeLength = new List<double>();
private List<Vector2> calculateSubpath(List<Vector2> subpath)
{
switch (CurveType)
{
case CurveTypes.Linear:
return subpath;
default:
return new BezierApproximator(subpath).CreateBezier();
}
}
public void Calculate()
{
calculatedPath.Clear();
// Sliders may consist of various subpaths separated by two consecutive vertices
// with the same position. The following loop parses these subpaths and computes
// their shape independently, consecutively appending them to calculatedPath.
List<Vector2> subpath = new List<Vector2>();
for (int i = 0; i < Path.Count; ++i)
{
subpath.Add(Path[i]);
if (i == Path.Count - 1 || Path[i] == Path[i + 1])
{
// If we already constructed a subpath previously, then the new subpath
// will have as starting position the end position of the previous subpath.
// Hence we can and should remove the previous endpoint to avoid a segment
// with 0 length.
if (calculatedPath.Count > 0)
calculatedPath.RemoveAt(calculatedPath.Count - 1);
calculatedPath.AddRange(calculateSubpath(subpath));
subpath.Clear();
}
}
cumulativeLength.Clear();
cumulativeLength.Add(Length = 0);
for (int i = 0; i < calculatedPath.Count - 1; ++i)
{
double d = (calculatedPath[i + 1] - calculatedPath[i]).Length;
Debug.Assert(d >= 0, "Cumulative lengths have to be strictly increasing.");
cumulativeLength.Add(Length += d);
}
}
private int indexOfDistance(double d)
{
int i = cumulativeLength.BinarySearch(d);
if (i < 0) i = ~i;
return i;
}
private double progressToDistance(double progress)
{
return MathHelper.Clamp(progress, 0, 1) * Length;
}
private Vector2 interpolateVertices(int i, double d)
{
if (calculatedPath.Count == 0)
return Vector2.Zero;
if (i <= 0)
return calculatedPath.First();
else if (i >= calculatedPath.Count)
return calculatedPath.Last();
Vector2 p0 = calculatedPath[i - 1];
Vector2 p1 = calculatedPath[i];
double d0 = cumulativeLength[i - 1];
double d1 = cumulativeLength[i];
// Avoid division by and almost-zero number in case two points are extremely close to each other.
if (Precision.AlmostEquals(d0, d1))
return p0;
double w = (d - d0) / (d1 - d0);
return p0 + (p1 - p0) * (float)w;
}
/// <summary>
/// Computes the slider curve until a given progress that ranges from 0 (beginning of the slider)
/// to 1 (end of the slider) and stores the generated path in the given list.
/// </summary>
/// <param name="path">The list to be filled with the computed curve.</param>
/// <param name="progress">Ranges from 0 (beginning of the slider) to 1 (end of the slider).</param>
public void GetPathToProgress(List<Vector2> path, double p0, double p1)
{
double d0 = progressToDistance(p0);
double d1 = progressToDistance(p1);
path.Clear();
int i = 0;
for (; i < calculatedPath.Count && cumulativeLength[i] < d0; ++i);
path.Add(interpolateVertices(i, d0));
for (; i < calculatedPath.Count && cumulativeLength[i] <= d1; ++i)
path.Add(calculatedPath[i]);
path.Add(interpolateVertices(i, d1));
}
/// <summary>
/// Computes the position on the slider at a given progress that ranges from 0 (beginning of the slider)
/// to 1 (end of the slider).
/// </summary>
/// <param name="progress">Ranges from 0 (beginning of the slider) to 1 (end of the slider).</param>
/// <returns></returns>
public Vector2 PositionAt(double progress)
{
double d = progressToDistance(progress);
return interpolateVertices(indexOfDistance(d), d);
}
}
}