1
0
mirror of https://github.com/ppy/osu.git synced 2024-09-22 06:07:25 +08:00
osu-lazer/osu.Game/Rulesets/UI/FrameStabilityContainer.cs
2020-10-30 20:39:25 +09:00

284 lines
10 KiB
C#

// Copyright (c) ppy Pty Ltd <contact@ppy.sh>. Licensed under the MIT Licence.
// See the LICENCE file in the repository root for full licence text.
using System;
using System.Collections.Generic;
using System.Linq;
using osu.Framework.Allocation;
using osu.Framework.Bindables;
using osu.Framework.Graphics;
using osu.Framework.Graphics.Containers;
using osu.Framework.Timing;
using osu.Game.Input.Handlers;
using osu.Game.Screens.Play;
namespace osu.Game.Rulesets.UI
{
/// <summary>
/// A container which consumes a parent gameplay clock and standardises frame counts for children.
/// Will ensure a minimum of 50 frames per clock second is maintained, regardless of any system lag or seeks.
/// </summary>
public class FrameStabilityContainer : Container, IHasReplayHandler
{
private readonly double gameplayStartTime;
/// <summary>
/// The number of frames (per parent frame) which can be run in an attempt to catch-up to real-time.
/// </summary>
public int MaxCatchUpFrames { get; set; } = 5;
/// <summary>
/// Whether to enable frame-stable playback.
/// </summary>
internal bool FrameStablePlayback = true;
public IFrameStableClock FrameStableClock => frameStableClock;
[Cached(typeof(GameplayClock))]
private readonly FrameStabilityClock frameStableClock;
public FrameStabilityContainer(double gameplayStartTime = double.MinValue)
{
RelativeSizeAxes = Axes.Both;
frameStableClock = new FrameStabilityClock(framedClock = new FramedClock(manualClock = new ManualClock()));
this.gameplayStartTime = gameplayStartTime;
}
private readonly ManualClock manualClock;
private readonly FramedClock framedClock;
private IFrameBasedClock parentGameplayClock;
/// <summary>
/// The current direction of playback to be exposed to frame stable children.
/// </summary>
private int direction;
[BackgroundDependencyLoader(true)]
private void load(GameplayClock clock, ISamplePlaybackDisabler sampleDisabler)
{
if (clock != null)
{
parentGameplayClock = frameStableClock.ParentGameplayClock = clock;
frameStableClock.IsPaused.BindTo(clock.IsPaused);
}
}
protected override void LoadComplete()
{
base.LoadComplete();
setClock();
}
private PlaybackState state;
protected override bool RequiresChildrenUpdate => base.RequiresChildrenUpdate && state != PlaybackState.NotValid;
private bool hasReplayAttached => ReplayInputHandler != null;
private const double sixty_frame_time = 1000.0 / 60;
private bool firstConsumption = true;
public override bool UpdateSubTree()
{
int loops = MaxCatchUpFrames;
do
{
// update clock is always trying to approach the aim time.
// it should be provided as the original value each loop.
updateClock();
if (state == PlaybackState.NotValid)
break;
base.UpdateSubTree();
UpdateSubTreeMasking(this, ScreenSpaceDrawQuad.AABBFloat);
} while (state == PlaybackState.RequiresCatchUp && loops-- > 0);
return true;
}
private void updateClock()
{
if (frameStableClock.WaitingOnFrames.Value)
{
// if waiting on frames, run one update loop to determine if frames have arrived.
state = PlaybackState.Valid;
}
else if (frameStableClock.IsPaused.Value)
{
// time should not advance while paused, nor should anything run.
state = PlaybackState.NotValid;
return;
}
else
{
state = PlaybackState.Valid;
}
if (parentGameplayClock == null)
setClock(); // LoadComplete may not be run yet, but we still want the clock.
double proposedTime = parentGameplayClock.CurrentTime;
if (FrameStablePlayback)
// if we require frame stability, the proposed time will be adjusted to move at most one known
// frame interval in the current direction.
applyFrameStability(ref proposedTime);
if (hasReplayAttached)
{
bool valid = updateReplay(ref proposedTime);
if (!valid)
state = PlaybackState.NotValid;
}
if (state == PlaybackState.Valid)
direction = proposedTime >= manualClock.CurrentTime ? 1 : -1;
double timeBehind = Math.Abs(proposedTime - parentGameplayClock.CurrentTime);
frameStableClock.IsCatchingUp.Value = timeBehind > 200;
frameStableClock.WaitingOnFrames.Value = state == PlaybackState.NotValid;
manualClock.CurrentTime = proposedTime;
manualClock.Rate = Math.Abs(parentGameplayClock.Rate) * direction;
manualClock.IsRunning = parentGameplayClock.IsRunning;
// determine whether catch-up is required.
if (state == PlaybackState.Valid && timeBehind > 0)
state = PlaybackState.RequiresCatchUp;
// The manual clock time has changed in the above code. The framed clock now needs to be updated
// to ensure that the its time is valid for our children before input is processed
framedClock.ProcessFrame();
}
/// <summary>
/// Attempt to advance replay playback for a given time.
/// </summary>
/// <param name="proposedTime">The time which is to be displayed.</param>
/// <returns>Whether playback is still valid.</returns>
private bool updateReplay(ref double proposedTime)
{
double? newTime;
if (FrameStablePlayback)
{
// when stability is turned on, we shouldn't execute for time values the replay is unable to satisfy.
newTime = ReplayInputHandler.SetFrameFromTime(proposedTime);
}
else
{
// when stability is disabled, we don't really care about accuracy.
// looping over the replay will allow it to catch up and feed out the required values
// for the current time.
while ((newTime = ReplayInputHandler.SetFrameFromTime(proposedTime)) != proposedTime)
{
if (newTime == null)
{
// special case for when the replay actually can't arrive at the required time.
// protects from potential endless loop.
break;
}
}
}
if (newTime == null)
return false;
proposedTime = newTime.Value;
return true;
}
/// <summary>
/// Apply frame stability modifier to a time.
/// </summary>
/// <param name="proposedTime">The time which is to be displayed.</param>
private void applyFrameStability(ref double proposedTime)
{
if (firstConsumption)
{
// On the first update, frame-stability seeking would result in unexpected/unwanted behaviour.
// Instead we perform an initial seek to the proposed time.
// process frame (in addition to finally clause) to clear out ElapsedTime
manualClock.CurrentTime = proposedTime;
framedClock.ProcessFrame();
firstConsumption = false;
return;
}
if (manualClock.CurrentTime < gameplayStartTime)
manualClock.CurrentTime = proposedTime = Math.Min(gameplayStartTime, proposedTime);
else if (Math.Abs(manualClock.CurrentTime - proposedTime) > sixty_frame_time * 1.2f)
{
proposedTime = proposedTime > manualClock.CurrentTime
? Math.Min(proposedTime, manualClock.CurrentTime + sixty_frame_time)
: Math.Max(proposedTime, manualClock.CurrentTime - sixty_frame_time);
}
}
private void setClock()
{
if (parentGameplayClock == null)
{
// in case a parent gameplay clock isn't available, just use the parent clock.
parentGameplayClock ??= Clock;
}
else
{
Clock = frameStableClock;
}
}
public ReplayInputHandler ReplayInputHandler { get; set; }
private enum PlaybackState
{
/// <summary>
/// Playback is not possible. Child hierarchy should not be processed.
/// </summary>
NotValid,
/// <summary>
/// Playback is running behind real-time. Catch-up will be attempted by processing more than once per
/// game loop (limited to a sane maximum to avoid frame drops).
/// </summary>
RequiresCatchUp,
/// <summary>
/// In a valid state, progressing one child hierarchy loop per game loop.
/// </summary>
Valid
}
private class FrameStabilityClock : GameplayClock, IFrameStableClock
{
public GameplayClock ParentGameplayClock;
public readonly Bindable<bool> IsCatchingUp = new Bindable<bool>();
public readonly Bindable<bool> WaitingOnFrames = new Bindable<bool>();
public override IEnumerable<Bindable<double>> NonGameplayAdjustments => ParentGameplayClock?.NonGameplayAdjustments ?? Enumerable.Empty<Bindable<double>>();
public FrameStabilityClock(FramedClock underlyingClock)
: base(underlyingClock)
{
}
IBindable<bool> IFrameStableClock.IsCatchingUp => IsCatchingUp;
IBindable<bool> IFrameStableClock.WaitingOnFrames => WaitingOnFrames;
}
}
}