mirror of
https://github.com/ppy/osu.git
synced 2024-12-14 15:33:05 +08:00
210 lines
8.3 KiB
C#
210 lines
8.3 KiB
C#
// Copyright (c) ppy Pty Ltd <contact@ppy.sh>. Licensed under the MIT Licence.
|
|
// See the LICENCE file in the repository root for full licence text.
|
|
|
|
#nullable disable
|
|
|
|
using System;
|
|
using System.Collections.Generic;
|
|
using System.Linq;
|
|
using osu.Game.Beatmaps;
|
|
using osu.Game.Rulesets.Judgements;
|
|
using osu.Game.Rulesets.Objects;
|
|
using osu.Game.Utils;
|
|
|
|
namespace osu.Game.Rulesets.Scoring
|
|
{
|
|
/// <summary>
|
|
/// A <see cref="HealthProcessor"/> which continuously drains health.<br />
|
|
/// At HP=0, the minimum health reached for a perfect play is 95%.<br />
|
|
/// At HP=5, the minimum health reached for a perfect play is 70%.<br />
|
|
/// At HP=10, the minimum health reached for a perfect play is 30%.
|
|
/// </summary>
|
|
public partial class DrainingHealthProcessor : HealthProcessor
|
|
{
|
|
/// <summary>
|
|
/// A reasonable allowable error for the minimum health offset from <see cref="targetMinimumHealth"/>. A 1% error is unnoticeable.
|
|
/// </summary>
|
|
private const double minimum_health_error = 0.01;
|
|
|
|
/// <summary>
|
|
/// The minimum health target at an HP drain rate of 0.
|
|
/// </summary>
|
|
private const double min_health_target = 0.99;
|
|
|
|
/// <summary>
|
|
/// The minimum health target at an HP drain rate of 5.
|
|
/// </summary>
|
|
private const double mid_health_target = 0.9;
|
|
|
|
/// <summary>
|
|
/// The minimum health target at an HP drain rate of 10.
|
|
/// </summary>
|
|
private const double max_health_target = 0.4;
|
|
|
|
/// <summary>
|
|
/// The drain rate as a proportion of the total health drained per millisecond.
|
|
/// </summary>
|
|
public double DrainRate { get; private set; }
|
|
|
|
/// <summary>
|
|
/// The beatmap.
|
|
/// </summary>
|
|
protected IBeatmap Beatmap { get; private set; }
|
|
|
|
/// <summary>
|
|
/// The time at which health starts draining.
|
|
/// </summary>
|
|
protected readonly double DrainStartTime;
|
|
|
|
/// <summary>
|
|
/// An amount of lenience to apply to the drain rate.
|
|
/// </summary>
|
|
protected readonly double DrainLenience;
|
|
|
|
private readonly List<HealthIncrease> healthIncreases = new List<HealthIncrease>();
|
|
|
|
private double gameplayEndTime;
|
|
private double targetMinimumHealth;
|
|
|
|
private PeriodTracker noDrainPeriodTracker;
|
|
|
|
/// <summary>
|
|
/// Creates a new <see cref="DrainingHealthProcessor"/>.
|
|
/// </summary>
|
|
/// <param name="drainStartTime">The time after which draining should begin.</param>
|
|
/// <param name="drainLenience">A lenience to apply to the default drain rate.<br />
|
|
/// A value of 0 uses the default drain rate.<br />
|
|
/// A value of 0.5 halves the drain rate.<br />
|
|
/// A value of 1 completely removes drain.</param>
|
|
public DrainingHealthProcessor(double drainStartTime, double drainLenience = 0)
|
|
{
|
|
DrainStartTime = drainStartTime;
|
|
DrainLenience = Math.Clamp(drainLenience, 0, 1);
|
|
}
|
|
|
|
protected override void Update()
|
|
{
|
|
base.Update();
|
|
|
|
if (noDrainPeriodTracker?.IsInAny(Time.Current) == true)
|
|
return;
|
|
|
|
// When jumping in and out of gameplay time within a single frame, health should only be drained for the period within the gameplay time
|
|
double lastGameplayTime = Math.Clamp(Time.Current - Time.Elapsed, DrainStartTime, gameplayEndTime);
|
|
double currentGameplayTime = Math.Clamp(Time.Current, DrainStartTime, gameplayEndTime);
|
|
|
|
if (DrainLenience < 1)
|
|
Health.Value -= DrainRate * (currentGameplayTime - lastGameplayTime);
|
|
}
|
|
|
|
public override void ApplyBeatmap(IBeatmap beatmap)
|
|
{
|
|
Beatmap = beatmap;
|
|
|
|
if (beatmap.HitObjects.Count > 0)
|
|
gameplayEndTime = beatmap.HitObjects[^1].GetEndTime();
|
|
|
|
noDrainPeriodTracker = new PeriodTracker(
|
|
beatmap.Breaks.Select(breakPeriod =>
|
|
new Period(
|
|
beatmap.HitObjects
|
|
.Select(hitObject => hitObject.GetEndTime())
|
|
.Where(endTime => endTime <= breakPeriod.StartTime)
|
|
.DefaultIfEmpty(double.MinValue)
|
|
.Last(),
|
|
beatmap.HitObjects
|
|
.Select(hitObject => hitObject.StartTime)
|
|
.Where(startTime => startTime >= breakPeriod.EndTime)
|
|
.DefaultIfEmpty(double.MaxValue)
|
|
.First()
|
|
)));
|
|
|
|
targetMinimumHealth = IBeatmapDifficultyInfo.DifficultyRange(beatmap.Difficulty.DrainRate, min_health_target, mid_health_target, max_health_target);
|
|
|
|
// Add back a portion of the amount of HP to be drained, depending on the lenience requested.
|
|
targetMinimumHealth += DrainLenience * (1 - targetMinimumHealth);
|
|
|
|
// Ensure the target HP is within an acceptable range.
|
|
targetMinimumHealth = Math.Clamp(targetMinimumHealth, 0, 1);
|
|
|
|
base.ApplyBeatmap(beatmap);
|
|
}
|
|
|
|
protected override void ApplyResultInternal(JudgementResult result)
|
|
{
|
|
base.ApplyResultInternal(result);
|
|
|
|
if (IsSimulating && !result.Type.IsBonus())
|
|
{
|
|
healthIncreases.Add(new HealthIncrease(
|
|
result.HitObject.GetEndTime() + result.TimeOffset,
|
|
GetHealthIncreaseFor(result)));
|
|
}
|
|
}
|
|
|
|
protected override void Reset(bool storeResults)
|
|
{
|
|
base.Reset(storeResults);
|
|
|
|
if (storeResults)
|
|
DrainRate = ComputeDrainRate();
|
|
|
|
healthIncreases.Clear();
|
|
}
|
|
|
|
protected virtual double ComputeDrainRate()
|
|
{
|
|
if (healthIncreases.Count <= 1)
|
|
return 0;
|
|
|
|
int adjustment = 1;
|
|
double result = 1;
|
|
|
|
// Although we expect the following loop to converge within 30 iterations (health within 1/2^31 accuracy of the target),
|
|
// we'll still keep a safety measure to avoid infinite loops by detecting overflows.
|
|
while (adjustment > 0)
|
|
{
|
|
double currentHealth = 1;
|
|
double lowestHealth = 1;
|
|
int currentBreak = 0;
|
|
|
|
for (int i = 0; i < healthIncreases.Count; i++)
|
|
{
|
|
double currentTime = healthIncreases[i].Time;
|
|
double lastTime = i > 0 ? healthIncreases[i - 1].Time : DrainStartTime;
|
|
|
|
while (currentBreak < Beatmap.Breaks.Count && Beatmap.Breaks[currentBreak].EndTime <= currentTime)
|
|
{
|
|
// If two hitobjects are separated by a break period, there is no drain for the full duration between the hitobjects.
|
|
// This differs from legacy (version < 8) beatmaps which continue draining until the break section is entered,
|
|
// but this shouldn't have a noticeable impact in practice.
|
|
lastTime = currentTime;
|
|
currentBreak++;
|
|
}
|
|
|
|
// Apply health adjustments
|
|
currentHealth -= (currentTime - lastTime) * result;
|
|
lowestHealth = Math.Min(lowestHealth, currentHealth);
|
|
currentHealth = Math.Min(1, currentHealth + healthIncreases[i].Amount);
|
|
|
|
// Common scenario for when the drain rate is definitely too harsh
|
|
if (lowestHealth < 0)
|
|
break;
|
|
}
|
|
|
|
// Stop if the resulting health is within a reasonable offset from the target
|
|
if (Math.Abs(lowestHealth - targetMinimumHealth) <= minimum_health_error)
|
|
break;
|
|
|
|
// This effectively works like a binary search - each iteration the search space moves closer to the target, but may exceed it.
|
|
adjustment *= 2;
|
|
result += 1.0 / adjustment * Math.Sign(lowestHealth - targetMinimumHealth);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
private record struct HealthIncrease(double Time, double Amount);
|
|
}
|
|
}
|