1
0
mirror of https://github.com/ppy/osu.git synced 2025-01-25 08:03:00 +08:00
osu-lazer/osu.Game/Utils/GeometryUtils.cs
2024-09-27 09:26:08 +02:00

377 lines
15 KiB
C#

// Copyright (c) ppy Pty Ltd <contact@ppy.sh>. Licensed under the MIT Licence.
// See the LICENCE file in the repository root for full licence text.
using System;
using System.Collections.Generic;
using System.Linq;
using osu.Framework.Graphics;
using osu.Framework.Graphics.Primitives;
using osu.Framework.Utils;
using osu.Game.Rulesets.Objects.Types;
using osuTK;
namespace osu.Game.Utils
{
public static class GeometryUtils
{
/// <summary>
/// Rotate a point around an arbitrary origin.
/// </summary>
/// <param name="point">The point.</param>
/// <param name="origin">The centre origin to rotate around.</param>
/// <param name="angle">The angle to rotate (in degrees).</param>
public static Vector2 RotatePointAroundOrigin(Vector2 point, Vector2 origin, float angle)
{
angle = -angle;
point.X -= origin.X;
point.Y -= origin.Y;
Vector2 ret = RotateVector(point, angle);
ret.X += origin.X;
ret.Y += origin.Y;
return ret;
}
/// <summary>
/// Rotate a vector around the origin.
/// </summary>
/// <param name="vector">The vector.</param>
/// <param name="angle">The angle to rotate (in degrees).</param>
public static Vector2 RotateVector(Vector2 vector, float angle)
{
return new Vector2(
vector.X * MathF.Cos(float.DegreesToRadians(angle)) + vector.Y * MathF.Sin(float.DegreesToRadians(angle)),
vector.X * -MathF.Sin(float.DegreesToRadians(angle)) + vector.Y * MathF.Cos(float.DegreesToRadians(angle))
);
}
/// <summary>
/// Given a flip direction, a surrounding quad for all selected objects, and a position,
/// will return the flipped position in screen space coordinates.
/// </summary>
/// <param name="direction">The direction to flip towards.</param>
/// <param name="quad">The quad surrounding all selected objects. The center of this determines the position of the axis.</param>
/// <param name="position">The position to flip.</param>
public static Vector2 GetFlippedPosition(Direction direction, Quad quad, Vector2 position)
{
var centre = quad.Centre;
switch (direction)
{
case Direction.Horizontal:
position.X = centre.X - (position.X - centre.X);
break;
case Direction.Vertical:
position.Y = centre.Y - (position.Y - centre.Y);
break;
}
return position;
}
/// <summary>
/// Given a flip axis vector, a surrounding quad for all selected objects, and a position,
/// will return the flipped position in screen space coordinates.
/// </summary>
/// <param name="axis">The vector indicating the direction to flip towards. This is perpendicular to the mirroring axis.</param>
/// <param name="quad">The quad surrounding all selected objects. The center of this determines the position of the axis.</param>
/// <param name="position">The position to flip.</param>
public static Vector2 GetFlippedPosition(Vector2 axis, Quad quad, Vector2 position)
{
var centre = quad.Centre;
return position - 2 * Vector2.Dot(position - centre, axis) * axis;
}
/// <summary>
/// Given a scale vector, a surrounding quad for all selected objects, and a position,
/// will return the scaled position in screen space coordinates.
/// </summary>
public static Vector2 GetScaledPosition(Anchor reference, Vector2 scale, Quad selectionQuad, Vector2 position)
{
// adjust the direction of scale depending on which side the user is dragging.
float xOffset = ((reference & Anchor.x0) > 0) ? -scale.X : 0;
float yOffset = ((reference & Anchor.y0) > 0) ? -scale.Y : 0;
// guard against no-ops and NaN.
if (scale.X != 0 && selectionQuad.Width > 0)
position.X = selectionQuad.TopLeft.X + xOffset + (position.X - selectionQuad.TopLeft.X) / selectionQuad.Width * (selectionQuad.Width + scale.X);
if (scale.Y != 0 && selectionQuad.Height > 0)
position.Y = selectionQuad.TopLeft.Y + yOffset + (position.Y - selectionQuad.TopLeft.Y) / selectionQuad.Height * (selectionQuad.Height + scale.Y);
return position;
}
/// <summary>
/// Given a scale multiplier, an origin, and a position,
/// will return the scaled position in screen space coordinates.
/// </summary>
public static Vector2 GetScaledPosition(Vector2 scale, Vector2 origin, Vector2 position, float axisRotation = 0)
{
return origin + RotateVector(RotateVector(position - origin, axisRotation) * scale, -axisRotation);
}
/// <summary>
/// Returns a quad surrounding the provided points.
/// </summary>
/// <param name="points">The points to calculate a quad for.</param>
public static Quad GetSurroundingQuad(IEnumerable<Vector2> points)
{
if (!points.Any())
return new Quad();
Vector2 minPosition = new Vector2(float.MaxValue, float.MaxValue);
Vector2 maxPosition = new Vector2(float.MinValue, float.MinValue);
// Go through all hitobjects to make sure they would remain in the bounds of the editor after movement, before any movement is attempted
foreach (var p in points)
{
minPosition = Vector2.ComponentMin(minPosition, p);
maxPosition = Vector2.ComponentMax(maxPosition, p);
}
Vector2 size = maxPosition - minPosition;
return new Quad(minPosition.X, minPosition.Y, size.X, size.Y);
}
/// <summary>
/// Returns a gamefield-space quad surrounding the provided hit objects.
/// </summary>
/// <param name="hitObjects">The hit objects to calculate a quad for.</param>
public static Quad GetSurroundingQuad(IEnumerable<IHasPosition> hitObjects) =>
GetSurroundingQuad(enumerateStartAndEndPositions(hitObjects));
/// <summary>
/// Returns the points that make up the convex hull of the provided points.
/// </summary>
/// <param name="points">The points to calculate a convex hull.</param>
public static List<Vector2> GetConvexHull(IEnumerable<Vector2> points)
{
var pointsList = points.OrderBy(p => p.X).ThenBy(p => p.Y).ToList();
if (pointsList.Count < 3)
return pointsList;
var convexHullLower = new List<Vector2>
{
pointsList[0],
pointsList[1]
};
var convexHullUpper = new List<Vector2>
{
pointsList[^1],
pointsList[^2]
};
// Build the lower hull.
for (int i = 2; i < pointsList.Count; i++)
{
Vector2 c = pointsList[i];
while (convexHullLower.Count > 1 && isClockwise(convexHullLower[^2], convexHullLower[^1], c))
convexHullLower.RemoveAt(convexHullLower.Count - 1);
convexHullLower.Add(c);
}
// Build the upper hull.
for (int i = pointsList.Count - 3; i >= 0; i--)
{
Vector2 c = pointsList[i];
while (convexHullUpper.Count > 1 && isClockwise(convexHullUpper[^2], convexHullUpper[^1], c))
convexHullUpper.RemoveAt(convexHullUpper.Count - 1);
convexHullUpper.Add(c);
}
convexHullLower.RemoveAt(convexHullLower.Count - 1);
convexHullUpper.RemoveAt(convexHullUpper.Count - 1);
convexHullLower.AddRange(convexHullUpper);
return convexHullLower;
float crossProduct(Vector2 v1, Vector2 v2) => v1.X * v2.Y - v1.Y * v2.X;
bool isClockwise(Vector2 a, Vector2 b, Vector2 c) => crossProduct(b - a, c - a) >= 0;
}
public static List<Vector2> GetConvexHull(IEnumerable<IHasPosition> hitObjects) =>
GetConvexHull(enumerateStartAndEndPositions(hitObjects));
private static IEnumerable<Vector2> enumerateStartAndEndPositions(IEnumerable<IHasPosition> hitObjects) =>
hitObjects.SelectMany(h =>
{
if (h is IHasPath path)
{
return new[]
{
h.Position,
// can't use EndPosition for reverse slider cases.
h.Position + path.Path.PositionAt(1)
};
}
return new[] { h.Position };
});
#region Welzl helpers
// Function to check whether a point lies inside or on the boundaries of the circle
private static bool isInside((Vector2 Centre, float Radius) c, Vector2 p)
{
return Precision.AlmostBigger(c.Radius, Vector2.Distance(c.Centre, p));
}
// Function to return a unique circle that intersects three points
private static (Vector2, float) circleFrom(Vector2 a, Vector2 b, Vector2 c)
{
if (Precision.AlmostEquals(0, (b.Y - a.Y) * (c.X - a.X) - (b.X - a.X) * (c.Y - a.Y)))
return circleFrom(a, b);
// See: https://en.wikipedia.org/wiki/Circumcircle#Cartesian_coordinates
float d = 2 * (a.X * (b - c).Y + b.X * (c - a).Y + c.X * (a - b).Y);
float aSq = a.LengthSquared;
float bSq = b.LengthSquared;
float cSq = c.LengthSquared;
var centre = new Vector2(
aSq * (b - c).Y + bSq * (c - a).Y + cSq * (a - b).Y,
aSq * (c - b).X + bSq * (a - c).X + cSq * (b - a).X) / d;
return (centre, Vector2.Distance(a, centre));
}
// Function to return the smallest circle that intersects 2 points
private static (Vector2, float) circleFrom(Vector2 a, Vector2 b)
{
var centre = (a + b) / 2.0f;
return (centre, Vector2.Distance(a, b) / 2.0f);
}
// Function to check whether a circle encloses the given points
private static bool isValidCircle((Vector2, float) c, List<Vector2> points)
{
// Iterating through all the points to check whether the points lie inside the circle or not
foreach (Vector2 p in points)
{
if (!isInside(c, p)) return false;
}
return true;
}
// Function to return the minimum enclosing circle for N <= 3
private static (Vector2, float) minCircleTrivial(List<Vector2> points)
{
if (points.Count > 3)
throw new ArgumentException("Number of points must be at most 3", nameof(points));
switch (points.Count)
{
case 0:
return (new Vector2(0, 0), 0);
case 1:
return (points[0], 0);
case 2:
return circleFrom(points[0], points[1]);
}
// To check if MEC can be determined by 2 points only
for (int i = 0; i < 3; i++)
{
for (int j = i + 1; j < 3; j++)
{
var c = circleFrom(points[i], points[j]);
if (isValidCircle(c, points))
return c;
}
}
return circleFrom(points[0], points[1], points[2]);
}
#endregion
/// <summary>
/// Function to find the minimum enclosing circle for a collection of points.
/// </summary>
/// <returns>A tuple containing the circle centre and radius.</returns>
public static (Vector2, float) MinimumEnclosingCircle(IEnumerable<Vector2> points)
{
// Using Welzl's algorithm to find the minimum enclosing circle
// https://www.geeksforgeeks.org/minimum-enclosing-circle-using-welzls-algorithm/
List<Vector2> p = points.ToList();
var stack = new Stack<(Vector2?, int)>();
var r = new List<Vector2>(3);
(Vector2, float) d = (Vector2.Zero, 0);
stack.Push((null, p.Count));
while (stack.Count > 0)
{
// `n` represents the number of points in P that are not yet processed.
// `point` represents the point that was randomly picked to process.
(Vector2? point, int n) = stack.Pop();
if (!point.HasValue)
{
// Base case when all points processed or |R| = 3
if (n == 0 || r.Count == 3)
{
d = minCircleTrivial(r);
continue;
}
// Pick a random point randomly
int idx = RNG.Next(n);
point = p[idx];
// Put the picked point at the end of P since it's more efficient than
// deleting from the middle of the list
(p[idx], p[n - 1]) = (p[n - 1], p[idx]);
// Schedule processing of p after we get the MEC circle d from the set of points P - {p}
stack.Push((point, n));
// Get the MEC circle d from the set of points P - {p}
stack.Push((null, n - 1));
}
else
{
// If d contains p, return d
if (isInside(d, point.Value))
continue;
// Remove points from R that were added in a deeper recursion
// |R| = |P| - |stack| - n
int removeCount = r.Count - (p.Count - stack.Count - n);
r.RemoveRange(r.Count - removeCount, removeCount);
// Otherwise, must be on the boundary of the MEC
r.Add(point.Value);
// Return the MEC for P - {p} and R U {p}
stack.Push((null, n - 1));
}
}
return d;
}
/// <summary>
/// Function to find the minimum enclosing circle for a collection of hit objects.
/// </summary>
/// <returns>A tuple containing the circle centre and radius.</returns>
public static (Vector2, float) MinimumEnclosingCircle(IEnumerable<IHasPosition> hitObjects) =>
MinimumEnclosingCircle(enumerateStartAndEndPositions(hitObjects));
}
}