1
0
mirror of https://github.com/ppy/osu.git synced 2024-09-30 02:47:25 +08:00
osu-lazer/osu.Game.Rulesets.Osu/Difficulty/Preprocessing/OsuDifficultyHitObject.cs
2021-11-03 18:09:44 +00:00

233 lines
11 KiB
C#

// Copyright (c) ppy Pty Ltd <contact@ppy.sh>. Licensed under the MIT Licence.
// See the LICENCE file in the repository root for full licence text.
using System;
using System.Linq;
using osu.Game.Rulesets.Difficulty.Preprocessing;
using osu.Game.Rulesets.Objects;
using osu.Game.Rulesets.Osu.Objects;
using osuTK;
namespace osu.Game.Rulesets.Osu.Difficulty.Preprocessing
{
public class OsuDifficultyHitObject : DifficultyHitObject
{
private const int normalized_radius = 50; // Change radius to 50 to make 100 the diameter. Easier for mental maths.
private const int min_delta_time = 25;
private const int minimum_slider_radius = normalized_radius * 2.4;
protected new OsuHitObject BaseObject => (OsuHitObject)base.BaseObject;
/// <summary>
/// Normalized distance from the end position of the previous <see cref="OsuDifficultyHitObject"/> to the start position of this <see cref="OsuDifficultyHitObject"/>.
/// </summary>
public double JumpDistance { get; private set; }
/// <summary>
/// Minimum distance from the end position of the previous <see cref="OsuDifficultyHitObject"/> to the start position of this <see cref="OsuDifficultyHitObject"/>.
/// </summary>
public double MovementDistance { get; private set; }
/// <summary>
/// Normalized distance between the start and end position of the previous <see cref="OsuDifficultyHitObject"/>.
/// </summary>
public double TravelDistance { get; private set; }
/// <summary>
/// Angle the player has to take to hit this <see cref="OsuDifficultyHitObject"/>.
/// Calculated as the angle between the circles (current-2, current-1, current).
/// </summary>
public double? Angle { get; private set; }
/// <summary>
/// Milliseconds elapsed since the end time of the previous <see cref="OsuDifficultyHitObject"/>, with a minimum of 25ms.
/// </summary>
public double MovementTime { get; private set; }
/// <summary>
/// Milliseconds elapsed since the start time of the previous <see cref="OsuDifficultyHitObject"/> to the end time of the same previous <see cref="OsuDifficultyHitObject"/>, with a minimum of 25ms.
/// </summary>
public double TravelTime { get; private set; }
/// <summary>
/// Milliseconds elapsed since the start time of the previous <see cref="OsuDifficultyHitObject"/>, with a minimum of 25ms.
/// </summary>
public readonly double StrainTime;
private readonly OsuHitObject lastLastObject;
private readonly OsuHitObject lastObject;
public OsuDifficultyHitObject(HitObject hitObject, HitObject lastLastObject, HitObject lastObject, double clockRate)
: base(hitObject, lastObject, clockRate)
{
this.lastLastObject = (OsuHitObject)lastLastObject;
this.lastObject = (OsuHitObject)lastObject;
// Capped to 25ms to prevent difficulty calculation breaking from simultaneous objects.
StrainTime = Math.Max(DeltaTime, min_delta_time);
setDistances(clockRate);
}
private void setDistances(double clockRate)
{
// We don't need to calculate either angle or distance when one of the last->curr objects is a spinner
if (BaseObject is Spinner || lastObject is Spinner)
return;
// We will scale distances by this factor, so we can assume a uniform CircleSize among beatmaps.
float scalingFactor = normalized_radius / (float)BaseObject.Radius;
if (BaseObject.Radius < 30)
{
float smallCircleBonus = Math.Min(30 - (float)BaseObject.Radius, 5) / 50;
scalingFactor *= 1 + smallCircleBonus;
}
Vector2 lastCursorPosition = getEndCursorPosition(lastObject);
JumpDistance = (BaseObject.StackedPosition * scalingFactor - lastCursorPosition * scalingFactor).Length;
if (lastObject is Slider lastSlider)
{
computeSliderCursorPosition(lastSlider);
TravelDistance = 0;
TravelTime = Math.Max(lastSlider.LazyTravelTime / clockRate, min_delta_time);
MovementTime = Math.Max(StrainTime - TravelTime, min_delta_time);
MovementDistance = Vector2.Subtract(lastSlider.TailCircle.StackedPosition, BaseObject.StackedPosition).Length * scalingFactor;
int repeatCount = 0;
Vector2 currSliderPosition = ((OsuHitObject)lastSlider.NestedHitObjects[0]).StackedPosition;
for (int i = 1; i < lastSlider.NestedHitObjects.Count; i++)
{
var currSliderObj = (OsuHitObject)lastSlider.NestedHitObjects[i];
Vector2 currSlider = Vector2.Subtract(currSliderObj.StackedPosition, currSliderPosition);
double currSliderLength = currSlider.Length * scalingFactor;
if (currSliderObj is SliderEndCircle && !(currSliderObj is SliderRepeat))
{
Vector2 lazySlider = Vector2.Subtract((Vector2)lastSlider.LazyEndPosition, currSliderPosition);
if (lazySlider.Length < currSlider.Length)
currSlider = lazySlider; // Take the least distance from slider end vs lazy end.
currSliderLength = currSlider.Length * scalingFactor;
}
if (currSliderObj is SliderTick)
{
if (currSliderLength > minimum_slider_radius) // minimum_slider_radius is used here as 120 = 2.4 * radius, which means that the cursor assumes the position of least movement required to reach the active tick window.
{
currSliderPosition = Vector2.Add(currSliderPosition, Vector2.Multiply(currSlider, (float)((currSliderLength - minimum_slider_radius) / currSliderLength)));
currSliderLength *= (currSliderLength - minimum_slider_radius) / currSliderLength;
}
else
currSliderLength = 0;
}
else if (currSliderObj is SliderRepeat)
{
if (currSliderLength > normalized_radius) // normalized_radius is used here as 50 = radius. This is a way to reward motion of back and forths sliders where we assume the player moves to atleast the rim of the hitcircle.
{
currSliderPosition = Vector2.Add(currSliderPosition, Vector2.Multiply(currSlider, (float)((currSliderLength - normalized_radius) / currSliderLength)));
currSliderLength *= (currSliderLength - normalized_radius) / currSliderLength;
}
else
currSliderLength = 0;
}
else
{
currSliderPosition = Vector2.Add(currSliderPosition, currSlider);
}
if (currSliderObj is SliderRepeat)
repeatCount++;
TravelDistance += currSliderLength;
}
TravelDistance *= Math.Pow(1 + repeatCount / 2.5, 1.0 / 2.5); // Bonus for repeat sliders until a better per nested object strain system can be achieved.
// Jump distance from the slider tail to the next object, as opposed to the lazy position of JumpDistance.
float tailJumpDistance = Vector2.Subtract(lastSlider.TailCircle.StackedPosition, BaseObject.StackedPosition).Length * scalingFactor;
// For hitobjects which continue in the direction of the slider, the player will normally follow through the slider,
// such that they're not jumping from the lazy position but rather from very close to (or the end of) the slider.
// In such cases, a leniency is applied by also considering the jump distance from the tail of the slider, and taking the minimum jump distance.
// Additional distance is removed based on position of jump relative to slider follow circle radius.
// JumpDistance is normalized_radius because lazyCursorPos uses a tighter 1.4 followCircle. tailJumpDistance is minimum_slider_radius since the full distance of radial leniency is still possible.
MovementDistance = Math.Max(0, Math.Min(JumpDistance - normalized_radius, tailJumpDistance - 120));
}
else
{
MovementTime = StrainTime;
MovementDistance = JumpDistance;
}
if (lastLastObject != null && !(lastLastObject is Spinner))
{
Vector2 lastLastCursorPosition = getEndCursorPosition(lastLastObject);
Vector2 v1 = lastLastCursorPosition - lastObject.StackedPosition;
Vector2 v2 = BaseObject.StackedPosition - lastCursorPosition;
float dot = Vector2.Dot(v1, v2);
float det = v1.X * v2.Y - v1.Y * v2.X;
Angle = Math.Abs(Math.Atan2(det, dot));
}
}
private void computeSliderCursorPosition(Slider slider)
{
if (slider.LazyEndPosition != null)
return;
slider.LazyEndPosition = slider.StackedPosition;
float approxFollowCircleRadius = (float)(slider.Radius * 1.4); // using 1.4 to better follow the real movement of a cursor.
var computeVertex = new Action<double>(t =>
{
double progress = (t - slider.StartTime) / slider.SpanDuration;
if (progress % 2 >= 1)
progress = 1 - progress % 1;
else
progress %= 1;
// ReSharper disable once PossibleInvalidOperationException (bugged in current r# version)
var diff = slider.StackedPosition + slider.Path.PositionAt(progress) - slider.LazyEndPosition.Value;
float dist = diff.Length;
slider.LazyTravelTime = t - slider.StartTime;
if (dist > approxFollowCircleRadius)
{
// The cursor would be outside the follow circle, we need to move it
diff.Normalize(); // Obtain direction of diff
dist -= approxFollowCircleRadius;
slider.LazyEndPosition += diff * dist;
slider.LazyTravelDistance += dist;
}
});
// Skip the head circle
var scoringTimes = slider.NestedHitObjects.Skip(1).Select(t => t.StartTime);
foreach (double time in scoringTimes)
computeVertex(time);
}
private Vector2 getEndCursorPosition(OsuHitObject hitObject)
{
Vector2 pos = hitObject.StackedPosition;
if (hitObject is Slider slider)
{
computeSliderCursorPosition(slider);
pos = slider.LazyEndPosition ?? pos;
}
return pos;
}
}
}