1
0
mirror of https://github.com/ppy/osu.git synced 2024-11-11 15:07:44 +08:00
osu-lazer/osu.Game/Rulesets/Objects/SliderPath.cs
2024-04-01 17:22:50 +09:00

496 lines
19 KiB
C#

// Copyright (c) ppy Pty Ltd <contact@ppy.sh>. Licensed under the MIT Licence.
// See the LICENCE file in the repository root for full licence text.
using System;
using System.Collections.Generic;
using System.Collections.Specialized;
using System.Diagnostics;
using System.Linq;
using Newtonsoft.Json;
using osu.Framework.Bindables;
using osu.Framework.Caching;
using osu.Framework.Utils;
using osu.Game.Rulesets.Objects.Types;
using osuTK;
namespace osu.Game.Rulesets.Objects
{
public class SliderPath
{
/// <summary>
/// The current version of this <see cref="SliderPath"/>. Updated when any change to the path occurs.
/// </summary>
[JsonIgnore]
public IBindable<int> Version => version;
private readonly Bindable<int> version = new Bindable<int>();
/// <summary>
/// The user-set distance of the path. If non-null, <see cref="Distance"/> will match this value,
/// and the path will be shortened/lengthened to match this length.
/// </summary>
public readonly Bindable<double?> ExpectedDistance = new Bindable<double?>();
public bool HasValidLength => Precision.DefinitelyBigger(Distance, 0);
/// <summary>
/// The control points of the path.
/// </summary>
public readonly BindableList<PathControlPoint> ControlPoints = new BindableList<PathControlPoint>();
private readonly List<Vector2> calculatedPath = new List<Vector2>();
private readonly List<double> cumulativeLength = new List<double>();
private readonly Cached pathCache = new Cached();
/// <summary>
/// Any additional length of the path which was optimised out during piecewise approximation, but should still be considered as part of <see cref="calculatedLength"/>.
/// </summary>
/// <remarks>
/// This is a hack for Catmull paths.
/// </remarks>
private double optimisedLength;
/// <summary>
/// The final calculated length of the path.
/// </summary>
private double calculatedLength;
private readonly List<int> segmentEnds = new List<int>();
private double[] segmentEndDistances = Array.Empty<double>();
/// <summary>
/// Creates a new <see cref="SliderPath"/>.
/// </summary>
public SliderPath()
{
ExpectedDistance.ValueChanged += _ => invalidate();
ControlPoints.CollectionChanged += (_, args) =>
{
switch (args.Action)
{
case NotifyCollectionChangedAction.Add:
Debug.Assert(args.NewItems != null);
foreach (object? newItem in args.NewItems)
((PathControlPoint)newItem).Changed += invalidate;
break;
case NotifyCollectionChangedAction.Reset:
case NotifyCollectionChangedAction.Remove:
Debug.Assert(args.OldItems != null);
foreach (object? oldItem in args.OldItems)
((PathControlPoint)oldItem).Changed -= invalidate;
break;
}
invalidate();
};
}
/// <summary>
/// Creates a new <see cref="SliderPath"/> initialised with a list of control points.
/// </summary>
/// <param name="controlPoints">An optional set of <see cref="PathControlPoint"/>s to initialise the path with.</param>
/// <param name="expectedDistance">A user-set distance of the path that may be shorter or longer than the true distance between all control points.
/// The path will be shortened/lengthened to match this length. If null, the path will use the true distance between all control points.</param>
[JsonConstructor]
public SliderPath(PathControlPoint[] controlPoints, double? expectedDistance = null)
: this()
{
ControlPoints.AddRange(controlPoints);
ExpectedDistance.Value = expectedDistance;
}
public SliderPath(PathType type, Vector2[] controlPoints, double? expectedDistance = null)
: this(controlPoints.Select((c, i) => new PathControlPoint(c, i == 0 ? type : null)).ToArray(), expectedDistance)
{
}
/// <summary>
/// The distance of the path after lengthening/shortening to account for <see cref="ExpectedDistance"/>.
/// </summary>
[JsonIgnore]
public double Distance
{
get
{
ensureValid();
return cumulativeLength.Count == 0 ? 0 : cumulativeLength[^1];
}
}
/// <summary>
/// The distance of the path prior to lengthening/shortening to account for <see cref="ExpectedDistance"/>.
/// </summary>
public double CalculatedDistance
{
get
{
ensureValid();
return calculatedLength;
}
}
private bool optimiseCatmull;
/// <summary>
/// Whether to optimise Catmull path segments, usually resulting in removing bulbs around stacked knots.
/// </summary>
/// <remarks>
/// This changes the path shape and should therefore not be used.
/// </remarks>
public bool OptimiseCatmull
{
get => optimiseCatmull;
set
{
optimiseCatmull = value;
invalidate();
}
}
/// <summary>
/// Computes the slider path until a given progress that ranges from 0 (beginning of the slider)
/// to 1 (end of the slider) and stores the generated path in the given list.
/// </summary>
/// <param name="path">The list to be filled with the computed path.</param>
/// <param name="p0">Start progress. Ranges from 0 (beginning of the slider) to 1 (end of the slider).</param>
/// <param name="p1">End progress. Ranges from 0 (beginning of the slider) to 1 (end of the slider).</param>
public void GetPathToProgress(List<Vector2> path, double p0, double p1)
{
ensureValid();
double d0 = progressToDistance(p0);
double d1 = progressToDistance(p1);
path.Clear();
int i = 0;
for (; i < calculatedPath.Count && cumulativeLength[i] < d0; ++i)
{
}
path.Add(interpolateVertices(i, d0));
for (; i < calculatedPath.Count && cumulativeLength[i] <= d1; ++i)
path.Add(calculatedPath[i]);
path.Add(interpolateVertices(i, d1));
}
/// <summary>
/// Computes the position on the slider at a given progress that ranges from 0 (beginning of the path)
/// to 1 (end of the path).
/// </summary>
/// <param name="progress">Ranges from 0 (beginning of the path) to 1 (end of the path).</param>
public Vector2 PositionAt(double progress)
{
ensureValid();
double d = progressToDistance(progress);
return interpolateVertices(indexOfDistance(d), d);
}
/// <summary>
/// Returns the control points belonging to the same segment as the one given.
/// The first point has a PathType which all other points inherit.
/// </summary>
/// <param name="controlPoint">One of the control points in the segment.</param>
public List<PathControlPoint> PointsInSegment(PathControlPoint controlPoint)
{
bool found = false;
List<PathControlPoint> pointsInCurrentSegment = new List<PathControlPoint>();
foreach (PathControlPoint point in ControlPoints)
{
if (point.Type != null)
{
if (!found)
pointsInCurrentSegment.Clear();
else
{
pointsInCurrentSegment.Add(point);
break;
}
}
pointsInCurrentSegment.Add(point);
if (point == controlPoint)
found = true;
}
return pointsInCurrentSegment;
}
/// <summary>
/// Returns the progress values at which (control point) segments of the path end.
/// Ranges from 0 (beginning of the path) to 1 (end of the path) to infinity (beyond the end of the path).
/// </summary>
/// <remarks>
/// <see cref="PositionAt"/> truncates the progression values to [0,1],
/// so you can't use this method in conjunction with that one to retrieve the positions of segment ends beyond the end of the path.
/// </remarks>
/// <example>
/// <para>
/// In case <see cref="Distance"/> is less than <see cref="CalculatedDistance"/>,
/// the last segment ends after the end of the path, hence it returns a value greater than 1.
/// </para>
/// <para>
/// In case <see cref="Distance"/> is greater than <see cref="CalculatedDistance"/>,
/// the last segment ends before the end of the path, hence it returns a value less than 1.
/// </para>
/// </example>
public IEnumerable<double> GetSegmentEnds()
{
ensureValid();
return segmentEndDistances.Select(d => d / Distance);
}
private void invalidate()
{
pathCache.Invalidate();
version.Value++;
}
private void ensureValid()
{
if (pathCache.IsValid)
return;
calculatePath();
calculateLength();
pathCache.Validate();
}
private void calculatePath()
{
calculatedPath.Clear();
segmentEnds.Clear();
optimisedLength = 0;
if (ControlPoints.Count == 0)
return;
Vector2[] vertices = new Vector2[ControlPoints.Count];
for (int i = 0; i < ControlPoints.Count; i++)
vertices[i] = ControlPoints[i].Position;
int start = 0;
for (int i = 0; i < ControlPoints.Count; i++)
{
if (ControlPoints[i].Type == null && i < ControlPoints.Count - 1)
continue;
// The current vertex ends the segment
var segmentVertices = vertices.AsSpan().Slice(start, i - start + 1);
var segmentType = ControlPoints[start].Type ?? PathType.LINEAR;
// No need to calculate path when there is only 1 vertex
if (segmentVertices.Length == 1)
calculatedPath.Add(segmentVertices[0]);
else if (segmentVertices.Length > 1)
{
List<Vector2> subPath = calculateSubPath(segmentVertices, segmentType);
// Skip the first vertex if it is the same as the last vertex from the previous segment
bool skipFirst = calculatedPath.Count > 0 && subPath.Count > 0 && calculatedPath.Last() == subPath[0];
for (int j = skipFirst ? 1 : 0; j < subPath.Count; j++)
calculatedPath.Add(subPath[j]);
}
if (i > 0)
{
// Remember the index of the segment end
segmentEnds.Add(calculatedPath.Count - 1);
}
// Start the new segment at the current vertex
start = i;
}
}
private List<Vector2> calculateSubPath(ReadOnlySpan<Vector2> subControlPoints, PathType type)
{
switch (type.Type)
{
case SplineType.Linear:
return PathApproximator.LinearToPiecewiseLinear(subControlPoints);
case SplineType.PerfectCurve:
{
if (subControlPoints.Length != 3)
break;
List<Vector2> subPath = PathApproximator.CircularArcToPiecewiseLinear(subControlPoints);
// If for some reason a circular arc could not be fit to the 3 given points, fall back to a numerically stable bezier approximation.
if (subPath.Count == 0)
break;
return subPath;
}
case SplineType.Catmull:
{
List<Vector2> subPath = PathApproximator.CatmullToPiecewiseLinear(subControlPoints);
if (!OptimiseCatmull)
return subPath;
// At draw time, osu!stable optimises paths by only keeping piecewise segments that are 6px apart.
// For the most part we don't care about this optimisation, and its additional heuristics are hard to reproduce in every implementation.
//
// However, it matters for Catmull paths which form "bulbs" around sequential knots with identical positions,
// so we'll apply a very basic form of the optimisation here and return a length representing the optimised portion.
// The returned length is important so that the optimisation doesn't cause the path to get extended to match the value of ExpectedDistance.
List<Vector2> optimisedPath = new List<Vector2>(subPath.Count);
Vector2? lastStart = null;
double lengthRemovedSinceStart = 0;
for (int i = 0; i < subPath.Count; i++)
{
if (lastStart == null)
{
optimisedPath.Add(subPath[i]);
lastStart = subPath[i];
continue;
}
Debug.Assert(i > 0);
double distFromStart = Vector2.Distance(lastStart.Value, subPath[i]);
lengthRemovedSinceStart += Vector2.Distance(subPath[i - 1], subPath[i]);
// See PathApproximator.catmull_detail.
const int catmull_detail = 50;
const int catmull_segment_length = catmull_detail * 2;
// Either 6px from the start, the last vertex at every knot, or the end of the path.
if (distFromStart > 6 || (i + 1) % catmull_segment_length == 0 || i == subPath.Count - 1)
{
optimisedPath.Add(subPath[i]);
optimisedLength += lengthRemovedSinceStart - distFromStart;
lastStart = null;
lengthRemovedSinceStart = 0;
}
}
return optimisedPath;
}
}
return PathApproximator.BSplineToPiecewiseLinear(subControlPoints, type.Degree ?? subControlPoints.Length);
}
private void calculateLength()
{
calculatedLength = optimisedLength;
cumulativeLength.Clear();
cumulativeLength.Add(0);
for (int i = 0; i < calculatedPath.Count - 1; i++)
{
Vector2 diff = calculatedPath[i + 1] - calculatedPath[i];
calculatedLength += diff.Length;
cumulativeLength.Add(calculatedLength);
}
// Store the distances of the segment ends now, because after shortening the indices may be out of range
segmentEndDistances = new double[segmentEnds.Count];
for (int i = 0; i < segmentEnds.Count; i++)
{
segmentEndDistances[i] = cumulativeLength[segmentEnds[i]];
}
if (ExpectedDistance.Value is double expectedDistance && calculatedLength != expectedDistance)
{
// In osu-stable, if the last two path points of a slider are equal, extension is not performed.
if (calculatedPath.Count >= 2 && calculatedPath[^1] == calculatedPath[^2] && expectedDistance > calculatedLength)
{
cumulativeLength.Add(calculatedLength);
return;
}
// The last length is always incorrect
cumulativeLength.RemoveAt(cumulativeLength.Count - 1);
int pathEndIndex = calculatedPath.Count - 1;
if (calculatedLength > expectedDistance)
{
// The path will be shortened further, in which case we should trim any more unnecessary lengths and their associated path segments
while (cumulativeLength.Count > 0 && cumulativeLength[^1] >= expectedDistance)
{
cumulativeLength.RemoveAt(cumulativeLength.Count - 1);
calculatedPath.RemoveAt(pathEndIndex--);
}
}
if (pathEndIndex <= 0)
{
// The expected distance is negative or zero
// TODO: Perhaps negative path lengths should be disallowed altogether
cumulativeLength.Add(0);
return;
}
// The direction of the segment to shorten or lengthen
Vector2 dir = (calculatedPath[pathEndIndex] - calculatedPath[pathEndIndex - 1]).Normalized();
calculatedPath[pathEndIndex] = calculatedPath[pathEndIndex - 1] + dir * (float)(expectedDistance - cumulativeLength[^1]);
cumulativeLength.Add(expectedDistance);
}
}
private int indexOfDistance(double d)
{
int i = cumulativeLength.BinarySearch(d);
if (i < 0) i = ~i;
return i;
}
private double progressToDistance(double progress)
{
return Math.Clamp(progress, 0, 1) * Distance;
}
private Vector2 interpolateVertices(int i, double d)
{
if (calculatedPath.Count == 0)
return Vector2.Zero;
if (i <= 0)
return calculatedPath.First();
if (i >= calculatedPath.Count)
return calculatedPath.Last();
Vector2 p0 = calculatedPath[i - 1];
Vector2 p1 = calculatedPath[i];
double d0 = cumulativeLength[i - 1];
double d1 = cumulativeLength[i];
// Avoid division by and almost-zero number in case two points are extremely close to each other.
if (Precision.AlmostEquals(d0, d1))
return p0;
double w = (d - d0) / (d1 - d0);
return p0 + (p1 - p0) * (float)w;
}
}
}