1
0
mirror of https://github.com/ppy/osu.git synced 2025-01-28 03:22:54 +08:00
osu-lazer/osu.Game/Rulesets/UI/FrameStabilityContainer.cs

229 lines
8.5 KiB
C#

// Copyright (c) ppy Pty Ltd <contact@ppy.sh>. Licensed under the MIT Licence.
// See the LICENCE file in the repository root for full licence text.
using System;
using osu.Framework.Allocation;
using osu.Framework.Graphics;
using osu.Framework.Graphics.Containers;
using osu.Framework.Timing;
using osu.Game.Input.Handlers;
using osu.Game.Screens.Play;
namespace osu.Game.Rulesets.UI
{
/// <summary>
/// A container which consumes a parent gameplay clock and standardises frame counts for children.
/// Will ensure a minimum of 50 frames per clock second is maintained, regardless of any system lag or seeks.
/// </summary>
public class FrameStabilityContainer : Container, IHasReplayHandler
{
private readonly double gameplayStartTime;
/// <summary>
/// The number of frames (per parent frame) which can be run in an attempt to catch-up to real-time.
/// </summary>
public int MaxCatchUpFrames { get; set; } = 5;
/// <summary>
/// Whether to enable frame-stable playback.
/// </summary>
internal bool FrameStablePlayback = true;
public GameplayClock GameplayClock => stabilityGameplayClock;
[Cached(typeof(GameplayClock))]
private readonly StabilityGameplayClock stabilityGameplayClock;
public FrameStabilityContainer(double gameplayStartTime = double.MinValue)
{
RelativeSizeAxes = Axes.Both;
stabilityGameplayClock = new StabilityGameplayClock(framedClock = new FramedClock(manualClock = new ManualClock()));
this.gameplayStartTime = gameplayStartTime;
}
private readonly ManualClock manualClock;
private readonly FramedClock framedClock;
private IFrameBasedClock parentGameplayClock;
/// <summary>
/// The current direction of playback to be exposed to frame stable children.
/// </summary>
private int direction;
[BackgroundDependencyLoader(true)]
private void load(GameplayClock clock)
{
if (clock != null)
{
stabilityGameplayClock.ParentGameplayClock = parentGameplayClock = clock;
GameplayClock.IsPaused.BindTo(clock.IsPaused);
}
}
protected override void LoadComplete()
{
base.LoadComplete();
setClock();
}
/// <summary>
/// Whether we are running up-to-date with our parent clock.
/// If not, we will need to keep processing children until we catch up.
/// </summary>
private bool requireMoreUpdateLoops;
/// <summary>
/// Whether we are in a valid state (ie. should we keep processing children frames).
/// This should be set to false when the replay is, for instance, waiting for future frames to arrive.
/// </summary>
private bool validState;
protected override bool RequiresChildrenUpdate => base.RequiresChildrenUpdate && validState;
private bool isAttached => ReplayInputHandler != null;
private const double sixty_frame_time = 1000.0 / 60;
private bool firstConsumption = true;
public override bool UpdateSubTree()
{
requireMoreUpdateLoops = true;
validState = !GameplayClock.IsPaused.Value;
int loops = 0;
while (validState && requireMoreUpdateLoops && loops++ < MaxCatchUpFrames)
{
updateClock();
if (validState)
{
base.UpdateSubTree();
UpdateSubTreeMasking(this, ScreenSpaceDrawQuad.AABBFloat);
}
}
return true;
}
private void updateClock()
{
if (parentGameplayClock == null)
setClock(); // LoadComplete may not be run yet, but we still want the clock.
validState = true;
requireMoreUpdateLoops = false;
var newProposedTime = parentGameplayClock.CurrentTime;
try
{
if (FrameStablePlayback)
{
if (firstConsumption)
{
// On the first update, frame-stability seeking would result in unexpected/unwanted behaviour.
// Instead we perform an initial seek to the proposed time.
// process frame (in addition to finally clause) to clear out ElapsedTime
manualClock.CurrentTime = newProposedTime;
framedClock.ProcessFrame();
firstConsumption = false;
}
else if (manualClock.CurrentTime < gameplayStartTime)
manualClock.CurrentTime = newProposedTime = Math.Min(gameplayStartTime, newProposedTime);
else if (Math.Abs(manualClock.CurrentTime - newProposedTime) > sixty_frame_time * 1.2f)
{
newProposedTime = newProposedTime > manualClock.CurrentTime
? Math.Min(newProposedTime, manualClock.CurrentTime + sixty_frame_time)
: Math.Max(newProposedTime, manualClock.CurrentTime - sixty_frame_time);
}
}
if (isAttached)
{
double? newTime;
if (FrameStablePlayback)
{
// when stability is turned on, we shouldn't execute for time values the replay is unable to satisfy.
if ((newTime = ReplayInputHandler.SetFrameFromTime(newProposedTime)) == null)
{
// setting invalid state here ensures that gameplay will not continue (ie. our child
// hierarchy won't be updated).
validState = false;
// potentially loop to catch-up playback.
requireMoreUpdateLoops = true;
return;
}
}
else
{
// when stability is disabled, we don't really care about accuracy.
// looping over the replay will allow it to catch up and feed out the required values
// for the current time.
while ((newTime = ReplayInputHandler.SetFrameFromTime(newProposedTime)) != newProposedTime)
{
if (newTime == null)
{
// special case for when the replay actually can't arrive at the required time.
// protects from potential endless loop.
validState = false;
return;
}
}
}
newProposedTime = newTime.Value;
}
}
finally
{
if (newProposedTime != manualClock.CurrentTime)
direction = newProposedTime > manualClock.CurrentTime ? 1 : -1;
manualClock.CurrentTime = newProposedTime;
manualClock.Rate = Math.Abs(parentGameplayClock.Rate) * direction;
manualClock.IsRunning = parentGameplayClock.IsRunning;
requireMoreUpdateLoops |= manualClock.CurrentTime != parentGameplayClock.CurrentTime;
// The manual clock time has changed in the above code. The framed clock now needs to be updated
// to ensure that the its time is valid for our children before input is processed
framedClock.ProcessFrame();
}
}
private void setClock()
{
// in case a parent gameplay clock isn't available, just use the parent clock.
parentGameplayClock ??= Clock;
Clock = GameplayClock;
ProcessCustomClock = false;
}
public ReplayInputHandler ReplayInputHandler { get; set; }
private class StabilityGameplayClock : GameplayClock
{
public IFrameBasedClock ParentGameplayClock;
public StabilityGameplayClock(FramedClock underlyingClock)
: base(underlyingClock)
{
}
public override bool IsSeeking => ParentGameplayClock != null && Math.Abs(CurrentTime - ParentGameplayClock.CurrentTime) > 200;
}
}
}