mirror of
https://github.com/ppy/osu.git
synced 2024-11-15 20:37:26 +08:00
377 lines
15 KiB
C#
377 lines
15 KiB
C#
// Copyright (c) ppy Pty Ltd <contact@ppy.sh>. Licensed under the MIT Licence.
|
|
// See the LICENCE file in the repository root for full licence text.
|
|
|
|
using System;
|
|
using System.Collections.Generic;
|
|
using System.Linq;
|
|
using osu.Framework.Graphics;
|
|
using osu.Framework.Graphics.Primitives;
|
|
using osu.Framework.Utils;
|
|
using osu.Game.Rulesets.Objects.Types;
|
|
using osuTK;
|
|
|
|
namespace osu.Game.Utils
|
|
{
|
|
public static class GeometryUtils
|
|
{
|
|
/// <summary>
|
|
/// Rotate a point around an arbitrary origin.
|
|
/// </summary>
|
|
/// <param name="point">The point.</param>
|
|
/// <param name="origin">The centre origin to rotate around.</param>
|
|
/// <param name="angle">The angle to rotate (in degrees).</param>
|
|
public static Vector2 RotatePointAroundOrigin(Vector2 point, Vector2 origin, float angle)
|
|
{
|
|
angle = -angle;
|
|
|
|
point.X -= origin.X;
|
|
point.Y -= origin.Y;
|
|
|
|
Vector2 ret = RotateVector(point, angle);
|
|
|
|
ret.X += origin.X;
|
|
ret.Y += origin.Y;
|
|
|
|
return ret;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Rotate a vector around the origin.
|
|
/// </summary>
|
|
/// <param name="vector">The vector.</param>
|
|
/// <param name="angle">The angle to rotate (in degrees).</param>
|
|
public static Vector2 RotateVector(Vector2 vector, float angle)
|
|
{
|
|
return new Vector2(
|
|
vector.X * MathF.Cos(float.DegreesToRadians(angle)) + vector.Y * MathF.Sin(float.DegreesToRadians(angle)),
|
|
vector.X * -MathF.Sin(float.DegreesToRadians(angle)) + vector.Y * MathF.Cos(float.DegreesToRadians(angle))
|
|
);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Given a flip direction, a surrounding quad for all selected objects, and a position,
|
|
/// will return the flipped position in screen space coordinates.
|
|
/// </summary>
|
|
/// <param name="direction">The direction to flip towards.</param>
|
|
/// <param name="quad">The quad surrounding all selected objects. The center of this determines the position of the axis.</param>
|
|
/// <param name="position">The position to flip.</param>
|
|
public static Vector2 GetFlippedPosition(Direction direction, Quad quad, Vector2 position)
|
|
{
|
|
var centre = quad.Centre;
|
|
|
|
switch (direction)
|
|
{
|
|
case Direction.Horizontal:
|
|
position.X = centre.X - (position.X - centre.X);
|
|
break;
|
|
|
|
case Direction.Vertical:
|
|
position.Y = centre.Y - (position.Y - centre.Y);
|
|
break;
|
|
}
|
|
|
|
return position;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Given a flip axis vector, a surrounding quad for all selected objects, and a position,
|
|
/// will return the flipped position in screen space coordinates.
|
|
/// </summary>
|
|
/// <param name="axis">The vector indicating the direction to flip towards. This is perpendicular to the mirroring axis.</param>
|
|
/// <param name="quad">The quad surrounding all selected objects. The center of this determines the position of the axis.</param>
|
|
/// <param name="position">The position to flip.</param>
|
|
public static Vector2 GetFlippedPosition(Vector2 axis, Quad quad, Vector2 position)
|
|
{
|
|
var centre = quad.Centre;
|
|
|
|
return position - 2 * Vector2.Dot(position - centre, axis) * axis;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Given a scale vector, a surrounding quad for all selected objects, and a position,
|
|
/// will return the scaled position in screen space coordinates.
|
|
/// </summary>
|
|
public static Vector2 GetScaledPosition(Anchor reference, Vector2 scale, Quad selectionQuad, Vector2 position)
|
|
{
|
|
// adjust the direction of scale depending on which side the user is dragging.
|
|
float xOffset = ((reference & Anchor.x0) > 0) ? -scale.X : 0;
|
|
float yOffset = ((reference & Anchor.y0) > 0) ? -scale.Y : 0;
|
|
|
|
// guard against no-ops and NaN.
|
|
if (scale.X != 0 && selectionQuad.Width > 0)
|
|
position.X = selectionQuad.TopLeft.X + xOffset + (position.X - selectionQuad.TopLeft.X) / selectionQuad.Width * (selectionQuad.Width + scale.X);
|
|
|
|
if (scale.Y != 0 && selectionQuad.Height > 0)
|
|
position.Y = selectionQuad.TopLeft.Y + yOffset + (position.Y - selectionQuad.TopLeft.Y) / selectionQuad.Height * (selectionQuad.Height + scale.Y);
|
|
|
|
return position;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Given a scale multiplier, an origin, and a position,
|
|
/// will return the scaled position in screen space coordinates.
|
|
/// </summary>
|
|
public static Vector2 GetScaledPosition(Vector2 scale, Vector2 origin, Vector2 position, float axisRotation = 0)
|
|
{
|
|
return origin + RotateVector(RotateVector(position - origin, axisRotation) * scale, -axisRotation);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Returns a quad surrounding the provided points.
|
|
/// </summary>
|
|
/// <param name="points">The points to calculate a quad for.</param>
|
|
public static Quad GetSurroundingQuad(IEnumerable<Vector2> points)
|
|
{
|
|
if (!points.Any())
|
|
return new Quad();
|
|
|
|
Vector2 minPosition = new Vector2(float.MaxValue, float.MaxValue);
|
|
Vector2 maxPosition = new Vector2(float.MinValue, float.MinValue);
|
|
|
|
// Go through all hitobjects to make sure they would remain in the bounds of the editor after movement, before any movement is attempted
|
|
foreach (var p in points)
|
|
{
|
|
minPosition = Vector2.ComponentMin(minPosition, p);
|
|
maxPosition = Vector2.ComponentMax(maxPosition, p);
|
|
}
|
|
|
|
Vector2 size = maxPosition - minPosition;
|
|
|
|
return new Quad(minPosition.X, minPosition.Y, size.X, size.Y);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Returns a gamefield-space quad surrounding the provided hit objects.
|
|
/// </summary>
|
|
/// <param name="hitObjects">The hit objects to calculate a quad for.</param>
|
|
public static Quad GetSurroundingQuad(IEnumerable<IHasPosition> hitObjects) =>
|
|
GetSurroundingQuad(enumerateStartAndEndPositions(hitObjects));
|
|
|
|
/// <summary>
|
|
/// Returns the points that make up the convex hull of the provided points.
|
|
/// </summary>
|
|
/// <param name="points">The points to calculate a convex hull.</param>
|
|
public static List<Vector2> GetConvexHull(IEnumerable<Vector2> points)
|
|
{
|
|
var pointsList = points.OrderBy(p => p.X).ThenBy(p => p.Y).ToList();
|
|
|
|
if (pointsList.Count < 3)
|
|
return pointsList;
|
|
|
|
var convexHullLower = new List<Vector2>
|
|
{
|
|
pointsList[0],
|
|
pointsList[1]
|
|
};
|
|
var convexHullUpper = new List<Vector2>
|
|
{
|
|
pointsList[^1],
|
|
pointsList[^2]
|
|
};
|
|
|
|
// Build the lower hull.
|
|
for (int i = 2; i < pointsList.Count; i++)
|
|
{
|
|
Vector2 c = pointsList[i];
|
|
while (convexHullLower.Count > 1 && isClockwise(convexHullLower[^2], convexHullLower[^1], c))
|
|
convexHullLower.RemoveAt(convexHullLower.Count - 1);
|
|
|
|
convexHullLower.Add(c);
|
|
}
|
|
|
|
// Build the upper hull.
|
|
for (int i = pointsList.Count - 3; i >= 0; i--)
|
|
{
|
|
Vector2 c = pointsList[i];
|
|
while (convexHullUpper.Count > 1 && isClockwise(convexHullUpper[^2], convexHullUpper[^1], c))
|
|
convexHullUpper.RemoveAt(convexHullUpper.Count - 1);
|
|
|
|
convexHullUpper.Add(c);
|
|
}
|
|
|
|
convexHullLower.RemoveAt(convexHullLower.Count - 1);
|
|
convexHullUpper.RemoveAt(convexHullUpper.Count - 1);
|
|
|
|
convexHullLower.AddRange(convexHullUpper);
|
|
|
|
return convexHullLower;
|
|
|
|
float crossProduct(Vector2 v1, Vector2 v2) => v1.X * v2.Y - v1.Y * v2.X;
|
|
|
|
bool isClockwise(Vector2 a, Vector2 b, Vector2 c) => crossProduct(b - a, c - a) >= 0;
|
|
}
|
|
|
|
public static List<Vector2> GetConvexHull(IEnumerable<IHasPosition> hitObjects) =>
|
|
GetConvexHull(enumerateStartAndEndPositions(hitObjects));
|
|
|
|
private static IEnumerable<Vector2> enumerateStartAndEndPositions(IEnumerable<IHasPosition> hitObjects) =>
|
|
hitObjects.SelectMany(h =>
|
|
{
|
|
if (h is IHasPath path)
|
|
{
|
|
return new[]
|
|
{
|
|
h.Position,
|
|
// can't use EndPosition for reverse slider cases.
|
|
h.Position + path.Path.PositionAt(1)
|
|
};
|
|
}
|
|
|
|
return new[] { h.Position };
|
|
});
|
|
|
|
#region Welzl helpers
|
|
|
|
// Function to check whether a point lies inside or on the boundaries of the circle
|
|
private static bool isInside((Vector2 Centre, float Radius) c, Vector2 p)
|
|
{
|
|
return Precision.AlmostBigger(c.Radius, Vector2.Distance(c.Centre, p));
|
|
}
|
|
|
|
// Function to return a unique circle that intersects three points
|
|
private static (Vector2, float) circleFrom(Vector2 a, Vector2 b, Vector2 c)
|
|
{
|
|
if (Precision.AlmostEquals(0, (b.Y - a.Y) * (c.X - a.X) - (b.X - a.X) * (c.Y - a.Y)))
|
|
return circleFrom(a, b);
|
|
|
|
// See: https://en.wikipedia.org/wiki/Circumcircle#Cartesian_coordinates
|
|
float d = 2 * (a.X * (b - c).Y + b.X * (c - a).Y + c.X * (a - b).Y);
|
|
float aSq = a.LengthSquared;
|
|
float bSq = b.LengthSquared;
|
|
float cSq = c.LengthSquared;
|
|
|
|
var centre = new Vector2(
|
|
aSq * (b - c).Y + bSq * (c - a).Y + cSq * (a - b).Y,
|
|
aSq * (c - b).X + bSq * (a - c).X + cSq * (b - a).X) / d;
|
|
|
|
return (centre, Vector2.Distance(a, centre));
|
|
}
|
|
|
|
// Function to return the smallest circle that intersects 2 points
|
|
private static (Vector2, float) circleFrom(Vector2 a, Vector2 b)
|
|
{
|
|
var centre = (a + b) / 2.0f;
|
|
return (centre, Vector2.Distance(a, b) / 2.0f);
|
|
}
|
|
|
|
// Function to check whether a circle encloses the given points
|
|
private static bool isValidCircle((Vector2, float) c, List<Vector2> points)
|
|
{
|
|
// Iterating through all the points to check whether the points lie inside the circle or not
|
|
foreach (Vector2 p in points)
|
|
{
|
|
if (!isInside(c, p)) return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Function to return the minimum enclosing circle for N <= 3
|
|
private static (Vector2, float) minCircleTrivial(List<Vector2> points)
|
|
{
|
|
if (points.Count > 3)
|
|
throw new ArgumentException("Number of points must be at most 3", nameof(points));
|
|
|
|
switch (points.Count)
|
|
{
|
|
case 0:
|
|
return (new Vector2(0, 0), 0);
|
|
|
|
case 1:
|
|
return (points[0], 0);
|
|
|
|
case 2:
|
|
return circleFrom(points[0], points[1]);
|
|
}
|
|
|
|
// To check if MEC can be determined by 2 points only
|
|
for (int i = 0; i < 3; i++)
|
|
{
|
|
for (int j = i + 1; j < 3; j++)
|
|
{
|
|
var c = circleFrom(points[i], points[j]);
|
|
|
|
if (isValidCircle(c, points))
|
|
return c;
|
|
}
|
|
}
|
|
|
|
return circleFrom(points[0], points[1], points[2]);
|
|
}
|
|
|
|
#endregion
|
|
|
|
/// <summary>
|
|
/// Function to find the minimum enclosing circle for a collection of points.
|
|
/// </summary>
|
|
/// <returns>A tuple containing the circle centre and radius.</returns>
|
|
public static (Vector2, float) MinimumEnclosingCircle(IEnumerable<Vector2> points)
|
|
{
|
|
// Using Welzl's algorithm to find the minimum enclosing circle
|
|
// https://www.geeksforgeeks.org/minimum-enclosing-circle-using-welzls-algorithm/
|
|
List<Vector2> p = points.ToList();
|
|
|
|
var stack = new Stack<(Vector2?, int)>();
|
|
var r = new List<Vector2>(3);
|
|
(Vector2, float) d = (Vector2.Zero, 0);
|
|
|
|
stack.Push((null, p.Count));
|
|
|
|
while (stack.Count > 0)
|
|
{
|
|
// `n` represents the number of points in P that are not yet processed.
|
|
// `point` represents the point that was randomly picked to process.
|
|
(Vector2? point, int n) = stack.Pop();
|
|
|
|
if (!point.HasValue)
|
|
{
|
|
// Base case when all points processed or |R| = 3
|
|
if (n == 0 || r.Count == 3)
|
|
{
|
|
d = minCircleTrivial(r);
|
|
continue;
|
|
}
|
|
|
|
// Pick a random point randomly
|
|
int idx = RNG.Next(n);
|
|
point = p[idx];
|
|
|
|
// Put the picked point at the end of P since it's more efficient than
|
|
// deleting from the middle of the list
|
|
(p[idx], p[n - 1]) = (p[n - 1], p[idx]);
|
|
|
|
// Schedule processing of p after we get the MEC circle d from the set of points P - {p}
|
|
stack.Push((point, n));
|
|
// Get the MEC circle d from the set of points P - {p}
|
|
stack.Push((null, n - 1));
|
|
}
|
|
else
|
|
{
|
|
// If d contains p, return d
|
|
if (isInside(d, point.Value))
|
|
continue;
|
|
|
|
// Remove points from R that were added in a deeper recursion
|
|
// |R| = |P| - |stack| - n
|
|
int removeCount = r.Count - (p.Count - stack.Count - n);
|
|
r.RemoveRange(r.Count - removeCount, removeCount);
|
|
|
|
// Otherwise, must be on the boundary of the MEC
|
|
r.Add(point.Value);
|
|
// Return the MEC for P - {p} and R U {p}
|
|
stack.Push((null, n - 1));
|
|
}
|
|
}
|
|
|
|
return d;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Function to find the minimum enclosing circle for a collection of hit objects.
|
|
/// </summary>
|
|
/// <returns>A tuple containing the circle centre and radius.</returns>
|
|
public static (Vector2, float) MinimumEnclosingCircle(IEnumerable<IHasPosition> hitObjects) =>
|
|
MinimumEnclosingCircle(enumerateStartAndEndPositions(hitObjects));
|
|
}
|
|
}
|