// Copyright (c) ppy Pty Ltd . Licensed under the MIT Licence. // See the LICENCE file in the repository root for full licence text. using System.Collections.Generic; using System.Linq; using osu.Framework.Extensions.IEnumerableExtensions; using osu.Framework.Utils; using osu.Game.Rulesets.Edit; using osu.Game.Rulesets.Objects.Types; using osuTK; namespace osu.Game.Rulesets.Objects { public static class SliderPathExtensions { /// /// Snaps the provided 's duration using the . /// public static void SnapTo(this THitObject hitObject, IDistanceSnapProvider? snapProvider) where THitObject : HitObject, IHasPath { hitObject.Path.ExpectedDistance.Value = snapProvider?.FindSnappedDistance(hitObject, (float)hitObject.Path.CalculatedDistance) ?? hitObject.Path.CalculatedDistance; } /// /// Reverse the direction of this path. /// /// The . /// The positional offset of the resulting path. It should be added to the start position of this path. public static void Reverse(this SliderPath sliderPath, out Vector2 positionalOffset) { var controlPoints = sliderPath.ControlPoints; var originalControlPointTypes = controlPoints.Select(p => p.Type).ToArray(); controlPoints[0].Type ??= PathType.Linear; // Inherited points after a linear point should be treated as linear points. controlPoints.Where(p => sliderPath.PointsInSegment(p)[0].Type == PathType.Linear).ForEach(p => p.Type = PathType.Linear); double[] segmentEnds = sliderPath.GetSegmentEnds().ToArray(); double[] distinctSegmentEnds = segmentEnds.Distinct().ToArray(); // Remove control points at the end which do not affect the visual slider path ("invisible" control points). if (segmentEnds.Length >= 2 && Precision.AlmostEquals(segmentEnds[^1], segmentEnds[^2]) && distinctSegmentEnds.Length > 1) { int numVisibleSegments = distinctSegmentEnds.Length - 2; var nonInheritedControlPoints = controlPoints.Where(p => p.Type is not null).ToList(); int lastVisibleControlPointIndex = controlPoints.IndexOf(nonInheritedControlPoints[numVisibleSegments]); // Make sure to include all inherited control points directly after the last visible non-inherited control point. while (lastVisibleControlPointIndex + 1 < controlPoints.Count) { lastVisibleControlPointIndex++; if (controlPoints[lastVisibleControlPointIndex].Type is not null) break; } // Remove all control points after the first invisible non-inherited control point. controlPoints.RemoveRange(lastVisibleControlPointIndex + 1, controlPoints.Count - lastVisibleControlPointIndex - 1); } // Restore original control point types. for (int i = 0; i < controlPoints.Count; i++) { controlPoints[i].Type = originalControlPointTypes[i]; } // Recalculate perfect curve at the end of the slider path. if (controlPoints.Count >= 3 && controlPoints[^3].Type == PathType.PerfectCurve && controlPoints[^2].Type is null && distinctSegmentEnds.Length > 1) { double lastSegmentStart = distinctSegmentEnds[^2]; double lastSegmentEnd = distinctSegmentEnds[^1]; var circleArcPath = new List(); sliderPath.GetPathToProgress(circleArcPath, lastSegmentStart / lastSegmentEnd, 1); controlPoints[^2].Position = circleArcPath[circleArcPath.Count / 2]; } sliderPath.reverseControlPoints(out positionalOffset); } /// /// Reverses the order of the provided 's s. /// /// The . /// The positional offset of the resulting path. It should be added to the start position of this path. private static void reverseControlPoints(this SliderPath sliderPath, out Vector2 positionalOffset) { var points = sliderPath.ControlPoints.ToArray(); positionalOffset = sliderPath.PositionAt(1); sliderPath.ControlPoints.Clear(); PathType? lastType = null; for (int i = 0; i < points.Length; i++) { var p = points[i]; p.Position -= positionalOffset; // propagate types forwards to last null type if (i == points.Length - 1) { p.Type = lastType; p.Position = Vector2.Zero; } else if (p.Type != null) (p.Type, lastType) = (lastType, p.Type); sliderPath.ControlPoints.Insert(0, p); } } } }