// Copyright (c) ppy Pty Ltd . Licensed under the MIT Licence. // See the LICENCE file in the repository root for full licence text. using System; using System.Collections.Generic; using System.Diagnostics; using System.Linq; using osu.Framework.Allocation; using osu.Framework.Graphics; using osu.Framework.Graphics.Containers; using osu.Framework.Graphics.Primitives; using osu.Game.Rulesets.Catch.Objects; using osu.Game.Rulesets.Edit; using osu.Game.Rulesets.Objects.Types; using osu.Game.Rulesets.UI.Scrolling; using osuTK; namespace osu.Game.Rulesets.Catch.Edit.Blueprints.Components { public abstract partial class EditablePath : CompositeDrawable { public int PathId => path.InvalidationID; public IReadOnlyList Vertices => path.Vertices; public int VertexCount => path.Vertices.Count; protected readonly Func PositionToTime; protected IReadOnlyList VertexStates => vertexStates; private readonly JuiceStreamPath path = new JuiceStreamPath(); // Invariant: `path.Vertices.Count == vertexStates.Count` private readonly List vertexStates = new List { new VertexState { IsFixed = true } }; private readonly List previousVertexStates = new List(); [Resolved] private IBeatSnapProvider? beatSnapProvider { get; set; } protected EditablePath(Func positionToTime) { PositionToTime = positionToTime; Anchor = Anchor.BottomLeft; } public void UpdateFrom(ScrollingHitObjectContainer hitObjectContainer, JuiceStream hitObject) { while (path.Vertices.Count < InternalChildren.Count) RemoveInternal(InternalChildren[^1], true); while (InternalChildren.Count < path.Vertices.Count) AddInternal(new VertexPiece()); double timeToYFactor = -hitObjectContainer.LengthAtTime(hitObject.StartTime, hitObject.StartTime + 1); for (int i = 0; i < VertexCount; i++) { var piece = (VertexPiece)InternalChildren[i]; var vertex = path.Vertices[i]; piece.Position = new Vector2(vertex.X, (float)(vertex.Time * timeToYFactor)); piece.UpdateFrom(vertexStates[i]); } } public void InitializeFromHitObject(JuiceStream hitObject) { var sliderPath = hitObject.Path; path.ConvertFromSliderPath(sliderPath, hitObject.Velocity); // If the original slider path has non-linear type segments, resample the vertices at nested hit object times to reduce the number of vertices. if (sliderPath.ControlPoints.Any(p => p.Type != null && p.Type != PathType.Linear)) { path.ResampleVertices(hitObject.NestedHitObjects .Skip(1).TakeWhile(h => !(h is Fruit)) // Only droplets in the first span are used. .Select(h => h.StartTime - hitObject.StartTime)); } vertexStates.Clear(); vertexStates.AddRange(path.Vertices.Select((_, i) => new VertexState { IsFixed = i == 0 })); } public void UpdateHitObjectFromPath(JuiceStream hitObject) { // The SV setting may need to be changed for the current path. var svBindable = hitObject.SliderVelocityMultiplierBindable; double svToVelocityFactor = hitObject.Velocity / svBindable.Value; double requiredVelocity = path.ComputeRequiredVelocity(); // The value is pre-rounded here because setting it to the bindable will rounded to the nearest value // but it should be always rounded up to satisfy the required minimum velocity condition. // // This is rounded to integers instead of using the precision of the bindable // because it results in a smaller number of non-redundant control points. // // The value is clamped here by the bindable min and max values. // In case the required velocity is too large, the path is not preserved. svBindable.Value = Math.Ceiling(requiredVelocity / svToVelocityFactor); path.ConvertToSliderPath(hitObject.Path, hitObject.LegacyConvertedY, hitObject.Velocity); if (beatSnapProvider == null) return; double endTime = hitObject.StartTime + path.Duration; double snappedEndTime = beatSnapProvider.SnapTime(endTime, hitObject.StartTime); hitObject.Path.ExpectedDistance.Value = (snappedEndTime - hitObject.StartTime) * hitObject.Velocity; } public Vector2 ToRelativePosition(Vector2 screenSpacePosition) { return ToLocalSpace(screenSpacePosition) - new Vector2(0, DrawHeight); } protected override bool ComputeIsMaskedAway(RectangleF maskingBounds) => false; protected int AddVertex(double time, float x) { int index = path.InsertVertex(time); path.SetVertexPosition(index, x); vertexStates.Insert(index, new VertexState()); correctFixedVertexPositions(); Debug.Assert(vertexStates.Count == VertexCount); return index; } protected bool RemoveVertex(int index) { if (index < 0 || index >= path.Vertices.Count) return false; if (vertexStates[index].IsFixed) return false; path.RemoveVertices((_, i) => i == index); vertexStates.RemoveAt(index); if (vertexStates.Count == 0) vertexStates.Add(new VertexState()); Debug.Assert(vertexStates.Count == VertexCount); return true; } protected void MoveSelectedVertices(double timeDelta, float xDelta) { // Because the vertex list may be reordered due to time change, the state list must be reordered as well. previousVertexStates.Clear(); previousVertexStates.AddRange(vertexStates); // We will recreate the path from scratch. Note that `Clear` leaves the first vertex. int vertexCount = VertexCount; path.Clear(); vertexStates.RemoveRange(1, vertexCount - 1); for (int i = 1; i < vertexCount; i++) { var state = previousVertexStates[i]; double time = state.VertexBeforeChange.Time; if (state.IsSelected) time += timeDelta; int newIndex = path.InsertVertex(Math.Max(0, time)); vertexStates.Insert(newIndex, state); } // First, restore positions of the non-selected vertices. for (int i = 0; i < vertexCount; i++) { if (!vertexStates[i].IsSelected && !vertexStates[i].IsFixed) path.SetVertexPosition(i, vertexStates[i].VertexBeforeChange.X); } // Then, move the selected vertices. for (int i = 0; i < vertexCount; i++) { if (vertexStates[i].IsSelected && !vertexStates[i].IsFixed) path.SetVertexPosition(i, vertexStates[i].VertexBeforeChange.X + xDelta); } // Finally, correct the position of fixed vertices. correctFixedVertexPositions(); } private void correctFixedVertexPositions() { for (int i = 0; i < VertexCount; i++) { if (vertexStates[i].IsFixed) path.SetVertexPosition(i, vertexStates[i].VertexBeforeChange.X); } } } }