// Copyright (c) ppy Pty Ltd . Licensed under the MIT Licence. // See the LICENCE file in the repository root for full licence text. using System; using System.Collections.Generic; using System.Diagnostics.CodeAnalysis; using System.Linq; using System.Threading.Tasks; using osu.Framework; using osu.Framework.Allocation; using osu.Framework.Audio; using osu.Framework.Audio.Track; using osu.Framework.Bindables; using osu.Framework.Graphics; using osu.Framework.Graphics.Containers; using osu.Framework.Timing; using osu.Game.Beatmaps; using osu.Game.Configuration; namespace osu.Game.Screens.Play { /// /// Encapsulates gameplay timing logic and provides a for children. /// public class GameplayClockContainer : Container { private readonly WorkingBeatmap beatmap; [NotNull] private ITrack track; public readonly BindableBool IsPaused = new BindableBool(); /// /// The decoupled clock used for gameplay. Should be used for seeks and clock control. /// private readonly DecoupleableInterpolatingFramedClock adjustableClock; private readonly double gameplayStartTime; private readonly double firstHitObjectTime; public readonly BindableNumber UserPlaybackRate = new BindableDouble(1) { Default = 1, MinValue = 0.5, MaxValue = 2, Precision = 0.1, }; /// /// The final clock which is exposed to underlying components. /// public GameplayClock GameplayClock => localGameplayClock; [Cached(typeof(GameplayClock))] private readonly LocalGameplayClock localGameplayClock; private Bindable userAudioOffset; private readonly FramedOffsetClock userOffsetClock; private readonly FramedOffsetClock platformOffsetClock; public GameplayClockContainer(WorkingBeatmap beatmap, double gameplayStartTime) { this.beatmap = beatmap; this.gameplayStartTime = gameplayStartTime; track = beatmap.Track; firstHitObjectTime = beatmap.Beatmap.HitObjects.First().StartTime; RelativeSizeAxes = Axes.Both; adjustableClock = new DecoupleableInterpolatingFramedClock { IsCoupled = false }; // Lazer's audio timings in general doesn't match stable. This is the result of user testing, albeit limited. // This only seems to be required on windows. We need to eventually figure out why, with a bit of luck. platformOffsetClock = new HardwareCorrectionOffsetClock(adjustableClock) { Offset = RuntimeInfo.OS == RuntimeInfo.Platform.Windows ? 15 : 0 }; // the final usable gameplay clock with user-set offsets applied. userOffsetClock = new HardwareCorrectionOffsetClock(platformOffsetClock); // the clock to be exposed via DI to children. localGameplayClock = new LocalGameplayClock(userOffsetClock); GameplayClock.IsPaused.BindTo(IsPaused); } private double totalOffset => userOffsetClock.Offset + platformOffsetClock.Offset; /// /// Duration before gameplay start time required before skip button displays. /// public const double MINIMUM_SKIP_TIME = 1000; private readonly BindableDouble pauseFreqAdjust = new BindableDouble(1); [BackgroundDependencyLoader] private void load(OsuConfigManager config) { userAudioOffset = config.GetBindable(OsuSetting.AudioOffset); userAudioOffset.BindValueChanged(offset => userOffsetClock.Offset = offset.NewValue, true); // sane default provided by ruleset. double startTime = Math.Min(0, gameplayStartTime); // if a storyboard is present, it may dictate the appropriate start time by having events in negative time space. // this is commonly used to display an intro before the audio track start. startTime = Math.Min(startTime, beatmap.Storyboard.FirstEventTime); // some beatmaps specify a current lead-in time which should be used instead of the ruleset-provided value when available. // this is not available as an option in the live editor but can still be applied via .osu editing. if (beatmap.BeatmapInfo.AudioLeadIn > 0) startTime = Math.Min(startTime, firstHitObjectTime - beatmap.BeatmapInfo.AudioLeadIn); Seek(startTime); adjustableClock.ProcessFrame(); } public void Restart() { Task.Run(() => { track.Seek(0); track.Stop(); Schedule(() => { adjustableClock.ChangeSource(track); updateRate(); if (!IsPaused.Value) Start(); }); }); } public void Start() { // Seeking the decoupled clock to its current time ensures that its source clock will be seeked to the same time // This accounts for the audio clock source potentially taking time to enter a completely stopped state Seek(GameplayClock.CurrentTime); adjustableClock.Start(); IsPaused.Value = false; this.TransformBindableTo(pauseFreqAdjust, 1, 200, Easing.In); } /// /// Skip forward to the next valid skip point. /// public void Skip() { if (GameplayClock.CurrentTime > gameplayStartTime - MINIMUM_SKIP_TIME) return; double skipTarget = gameplayStartTime - MINIMUM_SKIP_TIME; if (GameplayClock.CurrentTime < 0 && skipTarget > 6000) // double skip exception for storyboards with very long intros skipTarget = 0; Seek(skipTarget); } /// /// Seek to a specific time in gameplay. /// /// Adjusts for any offsets which have been applied (so the seek may not be the expected point in time on the underlying audio track). /// /// /// The destination time to seek to. public void Seek(double time) { // remove the offset component here because most of the time we want the seek to be aligned to gameplay, not the audio track. // we may want to consider reversing the application of offsets in the future as it may feel more correct. adjustableClock.Seek(time - totalOffset); // manually process frame to ensure GameplayClock is correctly updated after a seek. userOffsetClock.ProcessFrame(); } public void Stop() { this.TransformBindableTo(pauseFreqAdjust, 0, 200, Easing.Out).OnComplete(_ => adjustableClock.Stop()); IsPaused.Value = true; } /// /// Changes the backing clock to avoid using the originally provided track. /// public void StopUsingBeatmapClock() { removeSourceClockAdjustments(); track = new TrackVirtual(track.Length); adjustableClock.ChangeSource(track); } protected override void Update() { if (!IsPaused.Value) { userOffsetClock.ProcessFrame(); } base.Update(); } private bool speedAdjustmentsApplied; private void updateRate() { if (speedAdjustmentsApplied) return; track.AddAdjustment(AdjustableProperty.Frequency, pauseFreqAdjust); track.AddAdjustment(AdjustableProperty.Tempo, UserPlaybackRate); localGameplayClock.MutableNonGameplayAdjustments.Add(pauseFreqAdjust); localGameplayClock.MutableNonGameplayAdjustments.Add(UserPlaybackRate); speedAdjustmentsApplied = true; } protected override void Dispose(bool isDisposing) { base.Dispose(isDisposing); removeSourceClockAdjustments(); } private void removeSourceClockAdjustments() { if (!speedAdjustmentsApplied) return; track.RemoveAdjustment(AdjustableProperty.Frequency, pauseFreqAdjust); track.RemoveAdjustment(AdjustableProperty.Tempo, UserPlaybackRate); localGameplayClock.MutableNonGameplayAdjustments.Remove(pauseFreqAdjust); localGameplayClock.MutableNonGameplayAdjustments.Remove(UserPlaybackRate); speedAdjustmentsApplied = false; } private class LocalGameplayClock : GameplayClock { public readonly List> MutableNonGameplayAdjustments = new List>(); public override IEnumerable> NonGameplayAdjustments => MutableNonGameplayAdjustments; public LocalGameplayClock(FramedOffsetClock underlyingClock) : base(underlyingClock) { } } private class HardwareCorrectionOffsetClock : FramedOffsetClock { // we always want to apply the same real-time offset, so it should be adjusted by the difference in playback rate (from realtime) to achieve this. // base implementation already adds offset at 1.0 rate, so we only add the difference from that here. public override double CurrentTime => base.CurrentTime + Offset * (Rate - 1); public HardwareCorrectionOffsetClock(IClock source, bool processSource = true) : base(source, processSource) { } } } }