// Copyright (c) ppy Pty Ltd . Licensed under the MIT Licence. // See the LICENCE file in the repository root for full licence text. using System; using System.Collections.Generic; using System.Linq; using osu.Framework.Allocation; using osu.Framework.Bindables; using osu.Framework.Graphics; using osu.Framework.Graphics.Containers; using osu.Framework.Timing; using osu.Game.Input.Handlers; using osu.Game.Screens.Play; namespace osu.Game.Rulesets.UI { /// /// A container which consumes a parent gameplay clock and standardises frame counts for children. /// Will ensure a minimum of 50 frames per clock second is maintained, regardless of any system lag or seeks. /// public class FrameStabilityContainer : Container, IHasReplayHandler { private readonly double gameplayStartTime; /// /// The number of frames (per parent frame) which can be run in an attempt to catch-up to real-time. /// public int MaxCatchUpFrames { get; set; } = 5; /// /// Whether to enable frame-stable playback. /// internal bool FrameStablePlayback = true; public IFrameStableClock FrameStableClock => frameStableClock; [Cached(typeof(GameplayClock))] private readonly FrameStabilityClock frameStableClock; public FrameStabilityContainer(double gameplayStartTime = double.MinValue) { RelativeSizeAxes = Axes.Both; frameStableClock = new FrameStabilityClock(framedClock = new FramedClock(manualClock = new ManualClock())); this.gameplayStartTime = gameplayStartTime; } private readonly ManualClock manualClock; private readonly FramedClock framedClock; private IFrameBasedClock parentGameplayClock; /// /// The current direction of playback to be exposed to frame stable children. /// private int direction; [BackgroundDependencyLoader(true)] private void load(GameplayClock clock, ISamplePlaybackDisabler sampleDisabler) { if (clock != null) { parentGameplayClock = frameStableClock.ParentGameplayClock = clock; frameStableClock.IsPaused.BindTo(clock.IsPaused); } } protected override void LoadComplete() { base.LoadComplete(); setClock(); } /// /// Whether we are running up-to-date with our parent clock. /// If not, we will need to keep processing children until we catch up. /// private bool requireMoreUpdateLoops; /// /// Whether we are in a valid state (ie. should we keep processing children frames). /// This should be set to false when the replay is, for instance, waiting for future frames to arrive. /// private bool validState; protected override bool RequiresChildrenUpdate => base.RequiresChildrenUpdate && validState; private bool isAttached => ReplayInputHandler != null; private const double sixty_frame_time = 1000.0 / 60; private bool firstConsumption = true; public override bool UpdateSubTree() { requireMoreUpdateLoops = true; validState = !frameStableClock.IsPaused.Value; int loops = 0; if (frameStableClock.WaitingOnFrames.Value) { // for now, force one update loop to check if frames have arrived // this may have to change in the future where we want stable user pausing during replay playback. validState = true; } while (validState && requireMoreUpdateLoops && loops++ < MaxCatchUpFrames) { updateClock(); if (validState) { base.UpdateSubTree(); UpdateSubTreeMasking(this, ScreenSpaceDrawQuad.AABBFloat); } } return true; } private void updateClock() { if (parentGameplayClock == null) setClock(); // LoadComplete may not be run yet, but we still want the clock. validState = true; requireMoreUpdateLoops = false; var newProposedTime = parentGameplayClock.CurrentTime; try { if (FrameStablePlayback) { if (firstConsumption) { // On the first update, frame-stability seeking would result in unexpected/unwanted behaviour. // Instead we perform an initial seek to the proposed time. // process frame (in addition to finally clause) to clear out ElapsedTime manualClock.CurrentTime = newProposedTime; framedClock.ProcessFrame(); firstConsumption = false; } else if (manualClock.CurrentTime < gameplayStartTime) manualClock.CurrentTime = newProposedTime = Math.Min(gameplayStartTime, newProposedTime); else if (Math.Abs(manualClock.CurrentTime - newProposedTime) > sixty_frame_time * 1.2f) { newProposedTime = newProposedTime > manualClock.CurrentTime ? Math.Min(newProposedTime, manualClock.CurrentTime + sixty_frame_time) : Math.Max(newProposedTime, manualClock.CurrentTime - sixty_frame_time); } } if (isAttached) { double? newTime; if (FrameStablePlayback) { // when stability is turned on, we shouldn't execute for time values the replay is unable to satisfy. if ((newTime = ReplayInputHandler.SetFrameFromTime(newProposedTime)) == null) { // setting invalid state here ensures that gameplay will not continue (ie. our child // hierarchy won't be updated). validState = false; // potentially loop to catch-up playback. requireMoreUpdateLoops = true; return; } } else { // when stability is disabled, we don't really care about accuracy. // looping over the replay will allow it to catch up and feed out the required values // for the current time. while ((newTime = ReplayInputHandler.SetFrameFromTime(newProposedTime)) != newProposedTime) { if (newTime == null) { // special case for when the replay actually can't arrive at the required time. // protects from potential endless loop. validState = false; return; } } } newProposedTime = newTime.Value; } } finally { if (newProposedTime != manualClock.CurrentTime) direction = newProposedTime >= manualClock.CurrentTime ? 1 : -1; manualClock.CurrentTime = newProposedTime; manualClock.Rate = Math.Abs(parentGameplayClock.Rate) * direction; manualClock.IsRunning = parentGameplayClock.IsRunning; double timeBehind = Math.Abs(manualClock.CurrentTime - parentGameplayClock.CurrentTime); requireMoreUpdateLoops |= timeBehind != 0; frameStableClock.IsCatchingUp.Value = timeBehind > 200; frameStableClock.WaitingOnFrames.Value = !validState; // The manual clock time has changed in the above code. The framed clock now needs to be updated // to ensure that the its time is valid for our children before input is processed framedClock.ProcessFrame(); } } private void setClock() { if (parentGameplayClock == null) { // in case a parent gameplay clock isn't available, just use the parent clock. parentGameplayClock ??= Clock; } else { Clock = frameStableClock; } } public ReplayInputHandler ReplayInputHandler { get; set; } private class FrameStabilityClock : GameplayClock, IFrameStableClock { public GameplayClock ParentGameplayClock; public readonly Bindable IsCatchingUp = new Bindable(); public readonly Bindable WaitingOnFrames = new Bindable(); public override IEnumerable> NonGameplayAdjustments => ParentGameplayClock?.NonGameplayAdjustments ?? Enumerable.Empty>(); public FrameStabilityClock(FramedClock underlyingClock) : base(underlyingClock) { } IBindable IFrameStableClock.IsCatchingUp => IsCatchingUp; IBindable IFrameStableClock.WaitingOnFrames => WaitingOnFrames; } } }