// Copyright (c) ppy Pty Ltd . Licensed under the MIT Licence. // See the LICENCE file in the repository root for full licence text. #nullable disable using System; using System.Collections.Generic; using System.Diagnostics; using System.Linq; using osu.Framework.Allocation; using osu.Framework.Bindables; using osu.Framework.Graphics; using osu.Framework.Graphics.Containers; using osu.Framework.Timing; using osu.Game.Input.Handlers; using osu.Game.Screens.Play; namespace osu.Game.Rulesets.UI { /// /// A container which consumes a parent gameplay clock and standardises frame counts for children. /// Will ensure a minimum of 50 frames per clock second is maintained, regardless of any system lag or seeks. /// public class FrameStabilityContainer : Container, IHasReplayHandler { private readonly double gameplayStartTime; /// /// The number of frames (per parent frame) which can be run in an attempt to catch-up to real-time. /// public int MaxCatchUpFrames { get; set; } = 5; /// /// Whether to enable frame-stable playback. /// internal bool FrameStablePlayback = true; public IFrameStableClock FrameStableClock => frameStableClock; [Cached(typeof(GameplayClock))] private readonly FrameStabilityClock frameStableClock; public FrameStabilityContainer(double gameplayStartTime = double.MinValue) { RelativeSizeAxes = Axes.Both; frameStableClock = new FrameStabilityClock(framedClock = new FramedClock(manualClock = new ManualClock())); this.gameplayStartTime = gameplayStartTime; } private readonly ManualClock manualClock; private readonly FramedClock framedClock; private IFrameBasedClock parentGameplayClock; /// /// The current direction of playback to be exposed to frame stable children. /// /// /// Initially it is presumed that playback will proceed in the forward direction. /// private int direction = 1; [BackgroundDependencyLoader(true)] private void load(GameplayClock clock) { if (clock != null) { parentGameplayClock = frameStableClock.ParentGameplayClock = clock; frameStableClock.IsPaused.BindTo(clock.IsPaused); } } protected override void LoadComplete() { base.LoadComplete(); setClock(); } private PlaybackState state; protected override bool RequiresChildrenUpdate => base.RequiresChildrenUpdate && state != PlaybackState.NotValid; private bool hasReplayAttached => ReplayInputHandler != null; private const double sixty_frame_time = 1000.0 / 60; private bool firstConsumption = true; public override bool UpdateSubTree() { int loops = MaxCatchUpFrames; do { // update clock is always trying to approach the aim time. // it should be provided as the original value each loop. updateClock(); if (state == PlaybackState.NotValid) break; base.UpdateSubTree(); UpdateSubTreeMasking(this, ScreenSpaceDrawQuad.AABBFloat); } while (state == PlaybackState.RequiresCatchUp && loops-- > 0); return true; } private void updateClock() { if (frameStableClock.WaitingOnFrames.Value) { // if waiting on frames, run one update loop to determine if frames have arrived. state = PlaybackState.Valid; } else if (frameStableClock.IsPaused.Value) { // time should not advance while paused, nor should anything run. state = PlaybackState.NotValid; return; } else { state = PlaybackState.Valid; } if (parentGameplayClock == null) setClock(); // LoadComplete may not be run yet, but we still want the clock. Debug.Assert(parentGameplayClock != null); double proposedTime = parentGameplayClock.CurrentTime; if (FrameStablePlayback) // if we require frame stability, the proposed time will be adjusted to move at most one known // frame interval in the current direction. applyFrameStability(ref proposedTime); if (hasReplayAttached) { bool valid = updateReplay(ref proposedTime); if (!valid) state = PlaybackState.NotValid; } // if the proposed time is the same as the current time, assume that the clock will continue progressing in the same direction as previously. // this avoids spurious flips in direction from -1 to 1 during rewinds. if (state == PlaybackState.Valid && proposedTime != manualClock.CurrentTime) direction = proposedTime >= manualClock.CurrentTime ? 1 : -1; double timeBehind = Math.Abs(proposedTime - parentGameplayClock.CurrentTime); frameStableClock.IsCatchingUp.Value = timeBehind > 200; frameStableClock.WaitingOnFrames.Value = state == PlaybackState.NotValid; manualClock.CurrentTime = proposedTime; manualClock.Rate = Math.Abs(parentGameplayClock.Rate) * direction; manualClock.IsRunning = parentGameplayClock.IsRunning; // determine whether catch-up is required. if (state == PlaybackState.Valid && timeBehind > 0) state = PlaybackState.RequiresCatchUp; // The manual clock time has changed in the above code. The framed clock now needs to be updated // to ensure that the its time is valid for our children before input is processed framedClock.ProcessFrame(); } /// /// Attempt to advance replay playback for a given time. /// /// The time which is to be displayed. /// Whether playback is still valid. private bool updateReplay(ref double proposedTime) { double? newTime; if (FrameStablePlayback) { // when stability is turned on, we shouldn't execute for time values the replay is unable to satisfy. newTime = ReplayInputHandler.SetFrameFromTime(proposedTime); } else { // when stability is disabled, we don't really care about accuracy. // looping over the replay will allow it to catch up and feed out the required values // for the current time. while ((newTime = ReplayInputHandler.SetFrameFromTime(proposedTime)) != proposedTime) { if (newTime == null) { // special case for when the replay actually can't arrive at the required time. // protects from potential endless loop. break; } } } if (newTime == null) return false; proposedTime = newTime.Value; return true; } /// /// Apply frame stability modifier to a time. /// /// The time which is to be displayed. private void applyFrameStability(ref double proposedTime) { if (firstConsumption) { // On the first update, frame-stability seeking would result in unexpected/unwanted behaviour. // Instead we perform an initial seek to the proposed time. // process frame (in addition to finally clause) to clear out ElapsedTime manualClock.CurrentTime = proposedTime; framedClock.ProcessFrame(); firstConsumption = false; return; } if (manualClock.CurrentTime < gameplayStartTime) manualClock.CurrentTime = proposedTime = Math.Min(gameplayStartTime, proposedTime); else if (Math.Abs(manualClock.CurrentTime - proposedTime) > sixty_frame_time * 1.2f) { proposedTime = proposedTime > manualClock.CurrentTime ? Math.Min(proposedTime, manualClock.CurrentTime + sixty_frame_time) : Math.Max(proposedTime, manualClock.CurrentTime - sixty_frame_time); } } private void setClock() { if (parentGameplayClock == null) { // in case a parent gameplay clock isn't available, just use the parent clock. parentGameplayClock ??= Clock; } else { Clock = frameStableClock; } } public ReplayInputHandler ReplayInputHandler { get; set; } private enum PlaybackState { /// /// Playback is not possible. Child hierarchy should not be processed. /// NotValid, /// /// Playback is running behind real-time. Catch-up will be attempted by processing more than once per /// game loop (limited to a sane maximum to avoid frame drops). /// RequiresCatchUp, /// /// In a valid state, progressing one child hierarchy loop per game loop. /// Valid } private class FrameStabilityClock : GameplayClock, IFrameStableClock { public GameplayClock ParentGameplayClock; public readonly Bindable IsCatchingUp = new Bindable(); public readonly Bindable WaitingOnFrames = new Bindable(); public override IEnumerable> NonGameplayAdjustments => ParentGameplayClock?.NonGameplayAdjustments ?? Enumerable.Empty>(); public FrameStabilityClock(FramedClock underlyingClock) : base(underlyingClock) { } IBindable IFrameStableClock.IsCatchingUp => IsCatchingUp; IBindable IFrameStableClock.WaitingOnFrames => WaitingOnFrames; } } }