// Copyright (c) ppy Pty Ltd . Licensed under the MIT Licence. // See the LICENCE file in the repository root for full licence text. using System; using System.Collections.Generic; using System.Linq; using osu.Framework.Graphics.Primitives; using osu.Framework.Utils; using osu.Game.Beatmaps; using osu.Game.Rulesets.Mods; using osu.Game.Rulesets.Objects; using osu.Game.Rulesets.Osu.Beatmaps; using osu.Game.Rulesets.Osu.Objects; using osu.Game.Rulesets.Osu.UI; using osu.Game.Rulesets.Osu.Utils; using osuTK; namespace osu.Game.Rulesets.Osu.Mods { /// /// Mod that randomises the positions of the s /// public class OsuModRandom : ModRandom, IApplicableToBeatmap { public override string Description => "It never gets boring!"; private static readonly float playfield_diagonal = OsuPlayfield.BASE_SIZE.LengthFast; /// /// Number of previous hitobjects to be shifted together when another object is being moved. /// private const int preceding_hitobjects_to_shift = 10; private Random rng; public void ApplyToBeatmap(IBeatmap beatmap) { if (!(beatmap is OsuBeatmap osuBeatmap)) return; var hitObjects = osuBeatmap.HitObjects; Seed.Value ??= RNG.Next(); rng = new Random((int)Seed.Value); RandomObjectInfo previous = null; float rateOfChangeMultiplier = 0; for (int i = 0; i < hitObjects.Count; i++) { var hitObject = hitObjects[i]; var current = new RandomObjectInfo(hitObject); // rateOfChangeMultiplier only changes every 5 iterations in a combo // to prevent shaky-line-shaped streams if (hitObject.IndexInCurrentCombo % 5 == 0) rateOfChangeMultiplier = (float)rng.NextDouble() * 2 - 1; if (hitObject is Spinner) { previous = null; continue; } applyRandomisation(rateOfChangeMultiplier, previous, current); // Move hit objects back into the playfield if they are outside of it Vector2 shift = Vector2.Zero; switch (hitObject) { case HitCircle circle: shift = clampHitCircleToPlayfield(circle, current); break; case Slider slider: shift = clampSliderToPlayfield(slider, current); break; } if (shift != Vector2.Zero) { var toBeShifted = new List(); for (int j = i - 1; j >= i - preceding_hitobjects_to_shift && j >= 0; j--) { // only shift hit circles if (!(hitObjects[j] is HitCircle)) break; toBeShifted.Add(hitObjects[j]); } if (toBeShifted.Count > 0) applyDecreasingShift(toBeShifted, shift); } previous = current; } } /// /// Returns the final position of the hit object /// /// Final position of the hit object private void applyRandomisation(float rateOfChangeMultiplier, RandomObjectInfo previous, RandomObjectInfo current) { if (previous == null) { var playfieldSize = OsuPlayfield.BASE_SIZE; current.AngleRad = (float)(rng.NextDouble() * 2 * Math.PI - Math.PI); current.PositionRandomised = new Vector2((float)rng.NextDouble() * playfieldSize.X, (float)rng.NextDouble() * playfieldSize.Y); return; } float distanceToPrev = Vector2.Distance(previous.EndPositionOriginal, current.PositionOriginal); // The max. angle (relative to the angle of the vector pointing from the 2nd last to the last hit object) // is proportional to the distance between the last and the current hit object // to allow jumps and prevent too sharp turns during streams. // Allow maximum jump angle when jump distance is more than half of playfield diagonal length var randomAngleRad = rateOfChangeMultiplier * 2 * Math.PI * Math.Min(1f, distanceToPrev / (playfield_diagonal * 0.5f)); current.AngleRad = (float)randomAngleRad + previous.AngleRad; if (current.AngleRad < 0) current.AngleRad += 2 * (float)Math.PI; var posRelativeToPrev = new Vector2( distanceToPrev * (float)Math.Cos(current.AngleRad), distanceToPrev * (float)Math.Sin(current.AngleRad) ); posRelativeToPrev = OsuHitObjectGenerationUtils.RotateAwayFromEdge(previous.EndPositionRandomised, posRelativeToPrev); current.AngleRad = (float)Math.Atan2(posRelativeToPrev.Y, posRelativeToPrev.X); current.PositionRandomised = previous.EndPositionRandomised + posRelativeToPrev; } /// /// Moves the and all necessary nested s into the if they aren't already. /// /// The deviation from the original randomised position in order to fit within the playfield. private Vector2 clampSliderToPlayfield(Slider slider, RandomObjectInfo objectInfo) { var possibleMovementBounds = calculatePossibleMovementBounds(slider); var previousPosition = objectInfo.PositionRandomised; // Clamp slider position to the placement area // If the slider is larger than the playfield, force it to stay at the original position var newX = possibleMovementBounds.Width < 0 ? objectInfo.PositionOriginal.X : Math.Clamp(previousPosition.X, possibleMovementBounds.Left, possibleMovementBounds.Right); var newY = possibleMovementBounds.Height < 0 ? objectInfo.PositionOriginal.Y : Math.Clamp(previousPosition.Y, possibleMovementBounds.Top, possibleMovementBounds.Bottom); slider.Position = objectInfo.PositionRandomised = new Vector2(newX, newY); objectInfo.EndPositionRandomised = slider.EndPosition; shiftNestedObjects(slider, objectInfo.PositionRandomised - objectInfo.PositionOriginal); return objectInfo.PositionRandomised - previousPosition; } /// /// Decreasingly shift a list of s by a specified amount. /// The first item in the list is shifted by the largest amount, while the last item is shifted by the smallest amount. /// /// The list of hit objects to be shifted. /// The amount to be shifted. private void applyDecreasingShift(IList hitObjects, Vector2 shift) { for (int i = 0; i < hitObjects.Count; i++) { var hitObject = hitObjects[i]; // The first object is shifted by a vector slightly smaller than shift // The last object is shifted by a vector slightly larger than zero Vector2 position = hitObject.Position + shift * ((hitObjects.Count - i) / (float)(hitObjects.Count + 1)); hitObject.Position = clampToPlayfieldWithPadding(position, (float)hitObject.Radius); } } /// /// Calculates a which contains all of the possible movements of the slider (in relative X/Y coordinates) /// such that the entire slider is inside the playfield. /// /// /// If the slider is larger than the playfield, the returned may have negative width/height. /// private RectangleF calculatePossibleMovementBounds(Slider slider) { var pathPositions = new List(); slider.Path.GetPathToProgress(pathPositions, 0, 1); float minX = float.PositiveInfinity; float maxX = float.NegativeInfinity; float minY = float.PositiveInfinity; float maxY = float.NegativeInfinity; // Compute the bounding box of the slider. foreach (var pos in pathPositions) { minX = MathF.Min(minX, pos.X); maxX = MathF.Max(maxX, pos.X); minY = MathF.Min(minY, pos.Y); maxY = MathF.Max(maxY, pos.Y); } // Take the circle radius into account. var radius = (float)slider.Radius; minX -= radius; minY -= radius; maxX += radius; maxY += radius; // Given the bounding box of the slider (via min/max X/Y), // the amount that the slider can move to the left is minX (with the sign flipped, since positive X is to the right), // and the amount that it can move to the right is WIDTH - maxX. // Same calculation applies for the Y axis. float left = -minX; float right = OsuPlayfield.BASE_SIZE.X - maxX; float top = -minY; float bottom = OsuPlayfield.BASE_SIZE.Y - maxY; return new RectangleF(left, top, right - left, bottom - top); } /// /// Shifts all nested s and s by the specified shift. /// /// whose nested s and s should be shifted /// The the 's nested s and s should be shifted by private void shiftNestedObjects(Slider slider, Vector2 shift) { foreach (var hitObject in slider.NestedHitObjects.Where(o => o is SliderTick || o is SliderRepeat)) { if (!(hitObject is OsuHitObject osuHitObject)) continue; osuHitObject.Position += shift; } } /// /// Move the randomised position of a hit circle so that it fits inside the playfield. /// /// The deviation from the original randomised position in order to fit within the playfield. private Vector2 clampHitCircleToPlayfield(HitCircle circle, RandomObjectInfo objectInfo) { var previousPosition = objectInfo.PositionRandomised; objectInfo.EndPositionRandomised = objectInfo.PositionRandomised = clampToPlayfieldWithPadding( objectInfo.PositionRandomised, (float)circle.Radius ); circle.Position = objectInfo.PositionRandomised; return objectInfo.PositionRandomised - previousPosition; } /// /// Clamp a position to playfield, keeping a specified distance from the edges. /// /// The position to be clamped. /// The minimum distance allowed from playfield edges. /// The clamped position. private Vector2 clampToPlayfieldWithPadding(Vector2 position, float padding) { return new Vector2( Math.Clamp(position.X, padding, OsuPlayfield.BASE_SIZE.X - padding), Math.Clamp(position.Y, padding, OsuPlayfield.BASE_SIZE.Y - padding) ); } private class RandomObjectInfo { public float AngleRad { get; set; } public Vector2 PositionOriginal { get; } public Vector2 PositionRandomised { get; set; } public Vector2 EndPositionOriginal { get; } public Vector2 EndPositionRandomised { get; set; } public RandomObjectInfo(OsuHitObject hitObject) { PositionRandomised = PositionOriginal = hitObject.Position; EndPositionRandomised = EndPositionOriginal = hitObject.EndPosition; AngleRad = 0; } } } }