// Copyright (c) ppy Pty Ltd . Licensed under the MIT Licence. // See the LICENCE file in the repository root for full licence text. using System; using System.Collections.Generic; using System.Diagnostics; using JetBrains.Annotations; using osu.Game.Rulesets.Timing; namespace osu.Game.Rulesets.UI.Scrolling.Algorithms { public class SequentialScrollAlgorithm : IScrollAlgorithm { private static readonly IComparer by_position_comparer = Comparer.Create((c1, c2) => c1.Position.CompareTo(c2.Position)); private readonly IReadOnlyList controlPoints; /// /// Stores a mapping of time -> position for each control point. /// private readonly List positionMappings = new List(); public SequentialScrollAlgorithm(IReadOnlyList controlPoints) { this.controlPoints = controlPoints; } public double GetDisplayStartTime(double originTime, float offset, double timeRange, float scrollLength) { return TimeAt(-(scrollLength + offset), originTime, timeRange, scrollLength); } public float GetLength(double startTime, double endTime, double timeRange, float scrollLength) { double objectLength = relativePositionAt(endTime, timeRange) - relativePositionAt(startTime, timeRange); return (float)(objectLength * scrollLength); } public float PositionAt(double time, double currentTime, double timeRange, float scrollLength) { double timelineLength = relativePositionAt(time, timeRange) - relativePositionAt(currentTime, timeRange); return (float)(timelineLength * scrollLength); } public double TimeAt(float position, double currentTime, double timeRange, float scrollLength) { if (controlPoints.Count == 0) return position * timeRange; // Find the position at the current time, and the given length. double relativePosition = relativePositionAt(currentTime, timeRange) + position / scrollLength; var positionMapping = findControlPointMapping(timeRange, new PositionMapping(0, null, relativePosition), by_position_comparer); // Begin at the control point's time and add the remaining time to reach the given position. return positionMapping.Time + (relativePosition - positionMapping.Position) * timeRange / positionMapping.ControlPoint.Multiplier; } public void Reset() => positionMappings.Clear(); /// /// Finds the position which corresponds to a point in time. /// This is a non-linear operation that depends on all the control points up to and including the one active at the time value. /// /// The time to find the position at. /// The amount of time visualised by the scrolling area. /// A positive value indicating the position at . private double relativePositionAt(in double time, in double timeRange) { if (controlPoints.Count == 0) return time / timeRange; var mapping = findControlPointMapping(timeRange, new PositionMapping(time)); // Begin at the control point's position and add the remaining distance to reach the given time. return mapping.Position + (time - mapping.Time) / timeRange * mapping.ControlPoint.Multiplier; } /// /// Finds a 's that is relevant to a given . /// /// /// This is used to find the last occuring prior to a time value, or prior to a position value (if is used). /// /// The time range. /// The to find the closest to. /// The comparison. If null, the default comparer is used (by time). /// The 's that is relevant for . private PositionMapping findControlPointMapping(in double timeRange, in PositionMapping search, IComparer comparer = null) { generatePositionMappings(timeRange); int mappingIndex = positionMappings.BinarySearch(search, comparer ?? Comparer.Default); if (mappingIndex < 0) { // If the search value isn't found, the _next_ control point is returned, but we actually want the _previous_ control point. // In doing so, we must make sure to not underflow the position mapping list (i.e. always use the 0th control point for time < first_control_point_time). mappingIndex = Math.Max(0, ~mappingIndex - 1); Debug.Assert(mappingIndex < positionMappings.Count); } var mapping = positionMappings[mappingIndex]; Debug.Assert(mapping.ControlPoint != null); return mapping; } /// /// Generates the mapping of (and their respective start times) to their relative position from 0. /// /// The time range. private void generatePositionMappings(in double timeRange) { if (positionMappings.Count > 0) return; if (controlPoints.Count == 0) return; positionMappings.Add(new PositionMapping(controlPoints[0].StartTime, controlPoints[0])); for (int i = 0; i < controlPoints.Count - 1; i++) { var current = controlPoints[i]; var next = controlPoints[i + 1]; // Figure out how much of the time range the duration represents, and adjust it by the speed multiplier float length = (float)((next.StartTime - current.StartTime) / timeRange * current.Multiplier); positionMappings.Add(new PositionMapping(next.StartTime, next, positionMappings[^1].Position + length)); } } private readonly struct PositionMapping : IComparable { /// /// The time corresponding to this position. /// public readonly double Time; /// /// The at . /// [CanBeNull] public readonly MultiplierControlPoint ControlPoint; /// /// The relative position from 0 of . /// public readonly double Position; public PositionMapping(double time, MultiplierControlPoint controlPoint = null, double position = default) { Time = time; ControlPoint = controlPoint; Position = position; } public int CompareTo(PositionMapping other) => Time.CompareTo(other.Time); } } }