// Copyright (c) ppy Pty Ltd . Licensed under the MIT Licence. // See the LICENCE file in the repository root for full licence text. using System; using System.Collections.Generic; using System.Collections.Specialized; using System.Diagnostics; using System.Linq; using Newtonsoft.Json; using osu.Framework.Bindables; using osu.Framework.Caching; using osu.Framework.Utils; using osu.Game.Rulesets.Objects.Types; using osuTK; namespace osu.Game.Rulesets.Objects { public class SliderPath { /// /// The current version of this . Updated when any change to the path occurs. /// [JsonIgnore] public IBindable Version => version; private readonly Bindable version = new Bindable(); /// /// The user-set distance of the path. If non-null, will match this value, /// and the path will be shortened/lengthened to match this length. /// public readonly Bindable ExpectedDistance = new Bindable(); public bool HasValidLength => Distance > 0; /// /// The control points of the path. /// public readonly BindableList ControlPoints = new BindableList(); private readonly List calculatedPath = new List(); private readonly List cumulativeLength = new List(); private readonly Cached pathCache = new Cached(); private double calculatedLength; private readonly List segmentEnds = new List(); private double[] segmentEndDistances = Array.Empty(); /// /// Creates a new . /// public SliderPath() { ExpectedDistance.ValueChanged += _ => invalidate(); ControlPoints.CollectionChanged += (_, args) => { switch (args.Action) { case NotifyCollectionChangedAction.Add: Debug.Assert(args.NewItems != null); foreach (var c in args.NewItems.Cast()) c.Changed += invalidate; break; case NotifyCollectionChangedAction.Reset: case NotifyCollectionChangedAction.Remove: Debug.Assert(args.OldItems != null); foreach (var c in args.OldItems.Cast()) c.Changed -= invalidate; break; } invalidate(); }; } /// /// Creates a new initialised with a list of control points. /// /// An optional set of s to initialise the path with. /// A user-set distance of the path that may be shorter or longer than the true distance between all control points. /// The path will be shortened/lengthened to match this length. If null, the path will use the true distance between all control points. [JsonConstructor] public SliderPath(PathControlPoint[] controlPoints, double? expectedDistance = null) : this() { ControlPoints.AddRange(controlPoints); ExpectedDistance.Value = expectedDistance; } public SliderPath(PathType type, Vector2[] controlPoints, double? expectedDistance = null) : this(controlPoints.Select((c, i) => new PathControlPoint(c, i == 0 ? type : null)).ToArray(), expectedDistance) { } /// /// The distance of the path after lengthening/shortening to account for . /// [JsonIgnore] public double Distance { get { ensureValid(); return cumulativeLength.Count == 0 ? 0 : cumulativeLength[^1]; } } /// /// The distance of the path prior to lengthening/shortening to account for . /// public double CalculatedDistance { get { ensureValid(); return calculatedLength; } } /// /// Computes the slider path until a given progress that ranges from 0 (beginning of the slider) /// to 1 (end of the slider) and stores the generated path in the given list. /// /// The list to be filled with the computed path. /// Start progress. Ranges from 0 (beginning of the slider) to 1 (end of the slider). /// End progress. Ranges from 0 (beginning of the slider) to 1 (end of the slider). public void GetPathToProgress(List path, double p0, double p1) { ensureValid(); double d0 = progressToDistance(p0); double d1 = progressToDistance(p1); path.Clear(); int i = 0; for (; i < calculatedPath.Count && cumulativeLength[i] < d0; ++i) { } path.Add(interpolateVertices(i, d0)); for (; i < calculatedPath.Count && cumulativeLength[i] <= d1; ++i) path.Add(calculatedPath[i]); path.Add(interpolateVertices(i, d1)); } /// /// Computes the position on the slider at a given progress that ranges from 0 (beginning of the path) /// to 1 (end of the path). /// /// Ranges from 0 (beginning of the path) to 1 (end of the path). public Vector2 PositionAt(double progress) { ensureValid(); double d = progressToDistance(progress); return interpolateVertices(indexOfDistance(d), d); } /// /// Returns the control points belonging to the same segment as the one given. /// The first point has a PathType which all other points inherit. /// /// One of the control points in the segment. public List PointsInSegment(PathControlPoint controlPoint) { bool found = false; List pointsInCurrentSegment = new List(); foreach (PathControlPoint point in ControlPoints) { if (point.Type != null) { if (!found) pointsInCurrentSegment.Clear(); else { pointsInCurrentSegment.Add(point); break; } } pointsInCurrentSegment.Add(point); if (point == controlPoint) found = true; } return pointsInCurrentSegment; } /// /// Returns the progress values at which (control point) segments of the path end. /// Ranges from 0 (beginning of the path) to 1 (end of the path) to infinity (beyond the end of the path). /// /// /// truncates the progression values to [0,1], /// so you can't use this method in conjunction with that one to retrieve the positions of segment ends beyond the end of the path. /// /// /// /// In case is less than , /// the last segment ends after the end of the path, hence it returns a value greater than 1. /// /// /// In case is greater than , /// the last segment ends before the end of the path, hence it returns a value less than 1. /// /// public IEnumerable GetSegmentEnds() { ensureValid(); return segmentEndDistances.Select(d => d / Distance); } private void invalidate() { pathCache.Invalidate(); version.Value++; } private void ensureValid() { if (pathCache.IsValid) return; calculatePath(); calculateLength(); pathCache.Validate(); } private void calculatePath() { calculatedPath.Clear(); segmentEnds.Clear(); if (ControlPoints.Count == 0) return; Vector2[] vertices = new Vector2[ControlPoints.Count]; for (int i = 0; i < ControlPoints.Count; i++) vertices[i] = ControlPoints[i].Position; int start = 0; for (int i = 0; i < ControlPoints.Count; i++) { if (ControlPoints[i].Type == null && i < ControlPoints.Count - 1) continue; // The current vertex ends the segment var segmentVertices = vertices.AsSpan().Slice(start, i - start + 1); var segmentType = ControlPoints[start].Type ?? PathType.LINEAR; // No need to calculate path when there is only 1 vertex if (segmentVertices.Length == 1) calculatedPath.Add(segmentVertices[0]); else if (segmentVertices.Length > 1) { List subPath = calculateSubPath(segmentVertices, segmentType); // Skip the first vertex if it is the same as the last vertex from the previous segment int skipFirst = calculatedPath.Count > 0 && subPath.Count > 0 && calculatedPath.Last() == subPath[0] ? 1 : 0; foreach (Vector2 t in subPath.Skip(skipFirst)) calculatedPath.Add(t); } if (i > 0) { // Remember the index of the segment end segmentEnds.Add(calculatedPath.Count - 1); } // Start the new segment at the current vertex start = i; } } private List calculateSubPath(ReadOnlySpan subControlPoints, PathType type) { switch (type.Type) { case SplineType.Linear: return PathApproximator.LinearToPiecewiseLinear(subControlPoints); case SplineType.PerfectCurve: if (subControlPoints.Length != 3) break; List subPath = PathApproximator.CircularArcToPiecewiseLinear(subControlPoints); // If for some reason a circular arc could not be fit to the 3 given points, fall back to a numerically stable bezier approximation. if (subPath.Count == 0) break; return subPath; case SplineType.Catmull: return PathApproximator.CatmullToPiecewiseLinear(subControlPoints); } return PathApproximator.BSplineToPiecewiseLinear(subControlPoints, type.Degree ?? subControlPoints.Length); } private void calculateLength() { calculatedLength = 0; cumulativeLength.Clear(); cumulativeLength.Add(0); for (int i = 0; i < calculatedPath.Count - 1; i++) { Vector2 diff = calculatedPath[i + 1] - calculatedPath[i]; calculatedLength += diff.Length; cumulativeLength.Add(calculatedLength); } // Store the distances of the segment ends now, because after shortening the indices may be out of range segmentEndDistances = new double[segmentEnds.Count]; for (int i = 0; i < segmentEnds.Count; i++) { segmentEndDistances[i] = cumulativeLength[segmentEnds[i]]; } if (ExpectedDistance.Value is double expectedDistance && calculatedLength != expectedDistance) { // In osu-stable, if the last two path points of a slider are equal, extension is not performed. if (calculatedPath.Count >= 2 && calculatedPath[^1] == calculatedPath[^2] && expectedDistance > calculatedLength) { cumulativeLength.Add(calculatedLength); return; } // The last length is always incorrect cumulativeLength.RemoveAt(cumulativeLength.Count - 1); int pathEndIndex = calculatedPath.Count - 1; if (calculatedLength > expectedDistance) { // The path will be shortened further, in which case we should trim any more unnecessary lengths and their associated path segments while (cumulativeLength.Count > 0 && cumulativeLength[^1] >= expectedDistance) { cumulativeLength.RemoveAt(cumulativeLength.Count - 1); calculatedPath.RemoveAt(pathEndIndex--); } } if (pathEndIndex <= 0) { // The expected distance is negative or zero // TODO: Perhaps negative path lengths should be disallowed altogether cumulativeLength.Add(0); return; } // The direction of the segment to shorten or lengthen Vector2 dir = (calculatedPath[pathEndIndex] - calculatedPath[pathEndIndex - 1]).Normalized(); calculatedPath[pathEndIndex] = calculatedPath[pathEndIndex - 1] + dir * (float)(expectedDistance - cumulativeLength[^1]); cumulativeLength.Add(expectedDistance); } } private int indexOfDistance(double d) { int i = cumulativeLength.BinarySearch(d); if (i < 0) i = ~i; return i; } private double progressToDistance(double progress) { return Math.Clamp(progress, 0, 1) * Distance; } private Vector2 interpolateVertices(int i, double d) { if (calculatedPath.Count == 0) return Vector2.Zero; if (i <= 0) return calculatedPath.First(); if (i >= calculatedPath.Count) return calculatedPath.Last(); Vector2 p0 = calculatedPath[i - 1]; Vector2 p1 = calculatedPath[i]; double d0 = cumulativeLength[i - 1]; double d1 = cumulativeLength[i]; // Avoid division by and almost-zero number in case two points are extremely close to each other. if (Precision.AlmostEquals(d0, d1)) return p0; double w = (d - d0) / (d1 - d0); return p0 + (p1 - p0) * (float)w; } } }