// Copyright (c) ppy Pty Ltd . Licensed under the MIT Licence. // See the LICENCE file in the repository root for full licence text. using System; using System.Collections.Generic; using System.Linq; using osu.Framework.Graphics; using osu.Game.Storyboards.Drawables; using osuTK; namespace osu.Game.Storyboards { public class StoryboardSprite : IStoryboardElementWithDuration { private readonly List loops = new List(); private readonly List triggers = new List(); public string Path { get; } public bool IsDrawable => HasCommands; public Anchor Origin; public Vector2 InitialPosition; public readonly CommandTimelineGroup TimelineGroup = new CommandTimelineGroup(); public double StartTime { get { // To get the initial start time, we need to check whether the first alpha command to exist (across all loops) has a StartValue of zero. // A StartValue of zero governs, above all else, the first valid display time of a sprite. // // You can imagine that the first command of each type decides that type's start value, so if the initial alpha is zero, // anything before that point can be ignored (the sprite is not visible after all). var alphaCommands = new List<(double startTime, bool isZeroStartValue)>(); var command = TimelineGroup.Alpha.Commands.FirstOrDefault(); if (command != null) alphaCommands.Add((command.StartTime, command.StartValue == 0)); foreach (var loop in loops) { command = loop.Alpha.Commands.FirstOrDefault(); if (command != null) alphaCommands.Add((command.StartTime + loop.LoopStartTime, command.StartValue == 0)); } if (alphaCommands.Count > 0) { var firstAlpha = alphaCommands.MinBy(t => t.startTime); if (firstAlpha.isZeroStartValue) return firstAlpha.startTime; } return EarliestTransformTime; } } public double EarliestTransformTime { get { // If we got to this point, either no alpha commands were present, or the earliest had a non-zero start value. // The sprite's StartTime will be determined by the earliest command, regardless of type. double earliestStartTime = TimelineGroup.StartTime; foreach (var l in loops) earliestStartTime = Math.Min(earliestStartTime, l.StartTime); return earliestStartTime; } } public double EndTime { get { double latestEndTime = TimelineGroup.EndTime; foreach (var l in loops) latestEndTime = Math.Max(latestEndTime, l.EndTime); return latestEndTime; } } public double EndTimeForDisplay { get { double latestEndTime = double.MaxValue; // Ignore the whole setup if there are loops. In theory they can be handled here too, however the logic will be overly complex. if (loops.Count == 0) { // Take the minimum time of all the potential "death" reasons. latestEndTime = calculateOptimisedEndTime(TimelineGroup); } // If the logic above fails to find anything or discarded by the fact that there are loops present, latestEndTime will be double.MaxValue // and thus conservativeEndTime will be used. double conservativeEndTime = TimelineGroup.EndTime; foreach (var l in loops) conservativeEndTime = Math.Max(conservativeEndTime, l.StartTime + l.CommandsDuration * l.TotalIterations); return Math.Min(latestEndTime, conservativeEndTime); } } public bool HasCommands => TimelineGroup.HasCommands || loops.Any(l => l.HasCommands); private delegate void DrawablePropertyInitializer(Drawable drawable, T value); private delegate void DrawableTransformer(Drawable drawable, T value, double duration, Easing easing); public StoryboardSprite(string path, Anchor origin, Vector2 initialPosition) { Path = path; Origin = origin; InitialPosition = initialPosition; } public CommandLoop AddLoop(double startTime, int repeatCount) { var loop = new CommandLoop(startTime, repeatCount); loops.Add(loop); return loop; } public CommandTrigger AddTrigger(string triggerName, double startTime, double endTime, int groupNumber) { var trigger = new CommandTrigger(triggerName, startTime, endTime, groupNumber); triggers.Add(trigger); return trigger; } public virtual Drawable CreateDrawable() => new DrawableStoryboardSprite(this); public void ApplyTransforms(Drawable drawable, IEnumerable>? triggeredGroups = null) { // For performance reasons, we need to apply the commands in order by start time. Not doing so will cause many functions to be interleaved, resulting in O(n^2) complexity. // To achieve this, commands are "generated" as pairs of (command, initFunc, transformFunc) and batched into a contiguous list // The list is then stably-sorted (to preserve command order), and applied to the drawable sequentially. List generated = new List(); generateCommands(generated, getCommands(g => g.X, triggeredGroups), (d, value) => d.X = value, (d, value, duration, easing) => d.MoveToX(value, duration, easing)); generateCommands(generated, getCommands(g => g.Y, triggeredGroups), (d, value) => d.Y = value, (d, value, duration, easing) => d.MoveToY(value, duration, easing)); generateCommands(generated, getCommands(g => g.Scale, triggeredGroups), (d, value) => d.Scale = new Vector2(value), (d, value, duration, easing) => d.ScaleTo(value, duration, easing)); generateCommands(generated, getCommands(g => g.Rotation, triggeredGroups), (d, value) => d.Rotation = value, (d, value, duration, easing) => d.RotateTo(value, duration, easing)); generateCommands(generated, getCommands(g => g.Colour, triggeredGroups), (d, value) => d.Colour = value, (d, value, duration, easing) => d.FadeColour(value, duration, easing)); generateCommands(generated, getCommands(g => g.Alpha, triggeredGroups), (d, value) => d.Alpha = value, (d, value, duration, easing) => d.FadeTo(value, duration, easing)); generateCommands(generated, getCommands(g => g.BlendingParameters, triggeredGroups), (d, value) => d.Blending = value, (d, value, duration, _) => d.TransformBlendingMode(value, duration), false); if (drawable is IVectorScalable vectorScalable) { generateCommands(generated, getCommands(g => g.VectorScale, triggeredGroups), (_, value) => vectorScalable.VectorScale = value, (_, value, duration, easing) => vectorScalable.VectorScaleTo(value, duration, easing)); } if (drawable is IFlippable flippable) { generateCommands(generated, getCommands(g => g.FlipH, triggeredGroups), (_, value) => flippable.FlipH = value, (_, value, duration, _) => flippable.TransformFlipH(value, duration), false); generateCommands(generated, getCommands(g => g.FlipV, triggeredGroups), (_, value) => flippable.FlipV = value, (_, value, duration, _) => flippable.TransformFlipV(value, duration), false); } foreach (var command in generated.OrderBy(g => g.StartTime)) command.ApplyTo(drawable); } private void generateCommands(List resultList, IEnumerable.TypedCommand> commands, DrawablePropertyInitializer initializeProperty, DrawableTransformer transform, bool alwaysInitialize = true) { bool initialized = false; foreach (var command in commands) { DrawablePropertyInitializer? initFunc = null; if (!initialized) { if (alwaysInitialize || command.StartTime == command.EndTime) initFunc = initializeProperty; initialized = true; } resultList.Add(new GeneratedCommand(command, initFunc, transform)); } } private IEnumerable.TypedCommand> getCommands(CommandTimelineSelector timelineSelector, IEnumerable>? triggeredGroups) { var commands = TimelineGroup.GetCommands(timelineSelector); foreach (var loop in loops) commands = commands.Concat(loop.GetCommands(timelineSelector)); if (triggeredGroups != null) { foreach (var pair in triggeredGroups) commands = commands.Concat(pair.Item1.GetCommands(timelineSelector, pair.Item2)); } return commands; } private static double calculateOptimisedEndTime(CommandTimelineGroup timelineGroup) { // Here we are starting from maximum value and trying to minimise the end time on each step. // There are few solid guesses we can make using which sprite's end time can be minimised: alpha = 0, scale = 0, colour.a = 0. double[] deathTimes = { double.MaxValue, // alpha double.MaxValue, // colour alpha double.MaxValue, // scale double.MaxValue, // scale x double.MaxValue, // scale y }; // The loops below are following the same pattern. // We could be using TimelineGroup.EndValue here, however it's possible to have multiple commands with 0 value in a row // so we are saving the earliest of them. foreach (var alphaCommand in timelineGroup.Alpha.Commands) { if (alphaCommand.EndValue == 0) // commands are ordered by the start time, however end time may vary. Save the earliest. deathTimes[0] = Math.Min(alphaCommand.EndTime, deathTimes[0]); else // If value isn't 0 (sprite becomes visible again), revert the saved state. deathTimes[0] = double.MaxValue; } foreach (var colourCommand in timelineGroup.Colour.Commands) deathTimes[1] = colourCommand.EndValue.A == 0 ? Math.Min(colourCommand.EndTime, deathTimes[1]) : double.MaxValue; foreach (var scaleCommand in timelineGroup.Scale.Commands) deathTimes[2] = scaleCommand.EndValue == 0 ? Math.Min(scaleCommand.EndTime, deathTimes[2]) : double.MaxValue; foreach (var scaleCommand in timelineGroup.VectorScale.Commands) { deathTimes[3] = scaleCommand.EndValue.X == 0 ? Math.Min(scaleCommand.EndTime, deathTimes[3]) : double.MaxValue; deathTimes[4] = scaleCommand.EndValue.Y == 0 ? Math.Min(scaleCommand.EndTime, deathTimes[4]) : double.MaxValue; } return deathTimes.Min(); } public override string ToString() => $"{Path}, {Origin}, {InitialPosition}"; private interface IGeneratedCommand { double StartTime { get; } void ApplyTo(Drawable drawable); } private readonly struct GeneratedCommand : IGeneratedCommand { public double StartTime => command.StartTime; private readonly DrawablePropertyInitializer? initializeProperty; private readonly DrawableTransformer transform; private readonly CommandTimeline.TypedCommand command; public GeneratedCommand(CommandTimeline.TypedCommand command, DrawablePropertyInitializer? initializeProperty, DrawableTransformer transform) { this.command = command; this.initializeProperty = initializeProperty; this.transform = transform; } public void ApplyTo(Drawable drawable) { initializeProperty?.Invoke(drawable, command.StartValue); using (drawable.BeginAbsoluteSequence(command.StartTime)) { transform(drawable, command.StartValue, 0, Easing.None); transform(drawable, command.EndValue, command.Duration, command.Easing); } } } } }