// Copyright (c) ppy Pty Ltd . Licensed under the MIT Licence. // See the LICENCE file in the repository root for full licence text. #nullable disable using System; using System.Collections.Generic; using System.Linq; using osu.Game.Beatmaps; using osu.Game.Rulesets.Judgements; using osu.Game.Rulesets.Objects; using osu.Game.Utils; namespace osu.Game.Rulesets.Scoring { /// /// A which continuously drains health.
/// At HP=0, the minimum health reached for a perfect play is 95%.
/// At HP=5, the minimum health reached for a perfect play is 70%.
/// At HP=10, the minimum health reached for a perfect play is 30%. ///
public partial class DrainingHealthProcessor : HealthProcessor { /// /// A reasonable allowable error for the minimum health offset from . A 1% error is unnoticeable. /// private const double minimum_health_error = 0.01; /// /// The minimum health target at an HP drain rate of 0. /// private const double min_health_target = 0.99; /// /// The minimum health target at an HP drain rate of 5. /// private const double mid_health_target = 0.9; /// /// The minimum health target at an HP drain rate of 10. /// private const double max_health_target = 0.4; /// /// The drain rate as a proportion of the total health drained per millisecond. /// public double DrainRate { get; private set; } /// /// The beatmap. /// protected IBeatmap Beatmap { get; private set; } /// /// The time at which health starts draining. /// protected readonly double DrainStartTime; /// /// An amount of lenience to apply to the drain rate. /// protected readonly double DrainLenience; private readonly List<(double time, double health)> healthIncreases = new List<(double, double)>(); private double gameplayEndTime; private double targetMinimumHealth; private PeriodTracker noDrainPeriodTracker; /// /// Creates a new . /// /// The time after which draining should begin. /// A lenience to apply to the default drain rate.
/// A value of 0 uses the default drain rate.
/// A value of 0.5 halves the drain rate.
/// A value of 1 completely removes drain. public DrainingHealthProcessor(double drainStartTime, double drainLenience = 0) { DrainStartTime = drainStartTime; DrainLenience = Math.Clamp(drainLenience, 0, 1); } protected override void Update() { base.Update(); if (noDrainPeriodTracker?.IsInAny(Time.Current) == true) return; // When jumping in and out of gameplay time within a single frame, health should only be drained for the period within the gameplay time double lastGameplayTime = Math.Clamp(Time.Current - Time.Elapsed, DrainStartTime, gameplayEndTime); double currentGameplayTime = Math.Clamp(Time.Current, DrainStartTime, gameplayEndTime); if (DrainLenience < 1) Health.Value -= DrainRate * (currentGameplayTime - lastGameplayTime); } public override void ApplyBeatmap(IBeatmap beatmap) { Beatmap = beatmap; if (beatmap.HitObjects.Count > 0) gameplayEndTime = beatmap.HitObjects[^1].GetEndTime(); noDrainPeriodTracker = new PeriodTracker(beatmap.Breaks.Select(breakPeriod => new Period( beatmap.HitObjects .Select(hitObject => hitObject.GetEndTime()) .Where(endTime => endTime <= breakPeriod.StartTime) .DefaultIfEmpty(double.MinValue) .Last(), beatmap.HitObjects .Select(hitObject => hitObject.StartTime) .Where(startTime => startTime >= breakPeriod.EndTime) .DefaultIfEmpty(double.MaxValue) .First() ))); targetMinimumHealth = IBeatmapDifficultyInfo.DifficultyRange(beatmap.Difficulty.DrainRate, min_health_target, mid_health_target, max_health_target); // Add back a portion of the amount of HP to be drained, depending on the lenience requested. targetMinimumHealth += DrainLenience * (1 - targetMinimumHealth); // Ensure the target HP is within an acceptable range. targetMinimumHealth = Math.Clamp(targetMinimumHealth, 0, 1); base.ApplyBeatmap(beatmap); } protected override void ApplyResultInternal(JudgementResult result) { base.ApplyResultInternal(result); if (!result.Type.IsBonus()) healthIncreases.Add((result.HitObject.GetEndTime() + result.TimeOffset, GetHealthIncreaseFor(result))); } protected override void Reset(bool storeResults) { base.Reset(storeResults); if (storeResults) DrainRate = ComputeDrainRate(); healthIncreases.Clear(); } protected virtual double ComputeDrainRate() { if (healthIncreases.Count <= 1) return 0; int adjustment = 1; double result = 1; // Although we expect the following loop to converge within 30 iterations (health within 1/2^31 accuracy of the target), // we'll still keep a safety measure to avoid infinite loops by detecting overflows. while (adjustment > 0) { double currentHealth = 1; double lowestHealth = 1; int currentBreak = -1; for (int i = 0; i < healthIncreases.Count; i++) { double currentTime = healthIncreases[i].time; double lastTime = i > 0 ? healthIncreases[i - 1].time : DrainStartTime; // Subtract any break time from the duration since the last object if (Beatmap.Breaks.Count > 0) { // Advance the last break occuring before the current time while (currentBreak + 1 < Beatmap.Breaks.Count && Beatmap.Breaks[currentBreak + 1].EndTime < currentTime) currentBreak++; if (currentBreak >= 0) lastTime = Math.Max(lastTime, Beatmap.Breaks[currentBreak].EndTime); } // Apply health adjustments currentHealth -= (healthIncreases[i].time - lastTime) * result; lowestHealth = Math.Min(lowestHealth, currentHealth); currentHealth = Math.Min(1, currentHealth + healthIncreases[i].health); // Common scenario for when the drain rate is definitely too harsh if (lowestHealth < 0) break; } // Stop if the resulting health is within a reasonable offset from the target if (Math.Abs(lowestHealth - targetMinimumHealth) <= minimum_health_error) break; // This effectively works like a binary search - each iteration the search space moves closer to the target, but may exceed it. adjustment *= 2; result += 1.0 / adjustment * Math.Sign(lowestHealth - targetMinimumHealth); } return result; } } }