// Copyright (c) ppy Pty Ltd . Licensed under the MIT Licence. // See the LICENCE file in the repository root for full licence text. using System; using System.Collections.Generic; using System.Linq; using osu.Game.Rulesets.Difficulty.Preprocessing; using osu.Game.Rulesets.Osu.Difficulty.Preprocessing; using osu.Game.Rulesets.Osu.Difficulty.Skills; using osu.Game.Rulesets.Osu.Objects; namespace osu.Game.Rulesets.Osu.Difficulty.Evaluators { // Main class with some util functions public static class ReadingEvaluator { private const double reading_window_size = 3000; private const double overlap_multiplier = 1; public static double EvaluateDensityOf(DifficultyHitObject current, bool applyDistanceNerf = true, bool applySliderbodyDensity = true, double angleNerfMultiplier = 1.0) { var currObj = (OsuDifficultyHitObject)current; double density = 0; double densityAnglesNerf = -2; // we have threshold of 2 // Despite being called prev, it's actually more late in time OsuDifficultyHitObject prevObj0 = currObj; var readingObjects = currObj.ReadingObjects; for (int i = 0; i < readingObjects.Count; i++) { var loopObj = readingObjects[i].HitObject; if (loopObj.Index < 1) continue; // Don't look on the first object of the map double loopDifficulty = currObj.OpacityAt(loopObj.BaseObject.StartTime, false); // Small distances means objects may be cheesed, so it doesn't matter whether they are arranged confusingly. if (applyDistanceNerf) loopDifficulty *= (logistic((loopObj.MinimumJumpDistance - 80) / 10) + 0.2) / 1.2; // Additional buff for long sliderbodies. OVERBUFFED ON PURPOSE if (applySliderbodyDensity && loopObj.BaseObject is Slider slider) { // In radiuses, with minimal of 1 double sliderBodyLength = Math.Max(1, slider.Velocity * slider.SpanDuration / slider.Radius); // Bandaid to fix abuze sliderBodyLength = Math.Min(sliderBodyLength, 1 + slider.LazyTravelDistance / 8); // The maximum is 3x buff double sliderBodyBuff = Math.Log10(sliderBodyLength); // Limit the max buff to prevent abuse with very long sliders. // With explicit coverage of cases like one very long slider on the map, or just very few objects visible before/after. double maxBuff = 0.5; if (i > 0) maxBuff += 1; if (i < readingObjects.Count - 1) maxBuff += 1; loopDifficulty *= 1 + 1.5 * Math.Min(sliderBodyBuff, maxBuff); } // Reduce density bonus for this object if they're too apart in time // Nerf starts on 1500ms and reaches maximum (*=0) on 3000ms double timeBetweenCurrAndLoopObj = currObj.StartTime - loopObj.StartTime; loopDifficulty *= getTimeNerfFactor(timeBetweenCurrAndLoopObj); // Only if next object is slower, representing break from many notes in a row if (loopObj.StrainTime > prevObj0.StrainTime) { // Get rhythm similarity: 1 on same rhythms, 0.5 on 1/4 to 1/2 double rhythmSimilarity = 1 - getRhythmDifference(loopObj.StrainTime, prevObj0.StrainTime); // Make differentiation going from 1/4 to 1/2 and bigger difference // To 1/3 to 1/2 and smaller difference rhythmSimilarity = Math.Clamp(rhythmSimilarity, 0.5, 0.75); rhythmSimilarity = 4 * (rhythmSimilarity - 0.5); // Reduce density for this objects if rhythms are different loopDifficulty *= rhythmSimilarity; } density += loopDifficulty; // Angles nerf double angleNerf = (loopObj.AnglePredictability / 2) + 0.5; densityAnglesNerf += angleNerf * loopDifficulty * angleNerfMultiplier; prevObj0 = loopObj; } // Apply angles nerf density -= Math.Max(0, densityAnglesNerf); return density; } public static double EvaluateOverlapDifficultyOf(DifficultyHitObject current) { var currObj = (OsuDifficultyHitObject)current; double screenOverlapDifficulty = 0; if (currObj.ReadingObjects.Count == 0) return 0; var overlapDifficulties = new List<(OsuDifficultyHitObject HitObject, double Difficulty)>(); var readingObjects = currObj.ReadingObjects; // Find initial overlap values for (int i = 0; i < readingObjects.Count; i++) { var loopObj = readingObjects[i].HitObject; var loopReadingObjects = (List)loopObj.ReadingObjects; if (loopReadingObjects.Count == 0) continue; double targetStartTime = currObj.StartTime - currObj.Preempt; double overlapness = boundBinarySearch(loopReadingObjects, targetStartTime); if (overlapness > 0) overlapDifficulties.Add((loopObj, overlapness)); } if (overlapDifficulties.Count == 0) return 0; var sortedDifficulties = overlapDifficulties.OrderByDescending(d => d.Difficulty).ToList(); // Nerf overlap values of easier notes that are in the same place as hard notes for (int i = 0; i < sortedDifficulties.Count; i++) { var harderObject = sortedDifficulties[i]; // Look for all easier objects for (int j = i + 1; j < sortedDifficulties.Count; j++) { var easierObject = sortedDifficulties[j]; // Get the overlap value double overlapValue = 0; // OverlapValues dict only contains prev objects, so be sure to use right object if (harderObject.HitObject.Index > easierObject.HitObject.Index) harderObject.HitObject.OverlapValues.TryGetValue(easierObject.HitObject.Index, out overlapValue); else easierObject.HitObject.OverlapValues.TryGetValue(harderObject.HitObject.Index, out overlapValue); // Nerf easier object if it overlaps in the same place as hard one easierObject.Difficulty *= Math.Pow(1 - overlapValue, 2); } } const double decay_weight = 0.5; const double threshold = 0.6; double weight = 1.0; // Sum the overlap values to get difficulty foreach (var diffObject in sortedDifficulties.Where(d => d.Difficulty > threshold).OrderByDescending(d => d.Difficulty)) { // Add weighted difficulty screenOverlapDifficulty += Math.Max(0, diffObject.Difficulty - threshold) * weight; weight *= decay_weight; } return overlap_multiplier * Math.Max(0, screenOverlapDifficulty); } public static double EvaluateDifficultyOf(DifficultyHitObject current) { if (current.BaseObject is Spinner || current.Index == 0) return 0; double difficulty = Math.Pow(4 * Math.Log(Math.Max(1, EvaluateDensityOf(current, true, true))), 2.5); double overlapBonus = EvaluateOverlapDifficultyOf(current) * difficulty; difficulty += overlapBonus; return difficulty; } public static double EvaluateAimingDensityFactorOf(DifficultyHitObject current) { double difficulty = EvaluateDensityOf(current, true, false, 0.5); return Math.Max(0, Math.Pow(difficulty, 1.37) - 1); } // Returns value from 0 to 1, where 0 is very predictable and 1 is very unpredictable public static double EvaluateInpredictabilityOf(DifficultyHitObject current) { // make the sum equal to 1 const double velocity_change_part = 0.8; const double angle_change_part = 0.1; const double rhythm_change_part = 0.1; if (current.BaseObject is Spinner || current.Index == 0 || current.Previous(0).BaseObject is Spinner) return 0; var osuCurrObj = (OsuDifficultyHitObject)current; var osuLastObj = (OsuDifficultyHitObject)current.Previous(0); // Rhythm difference punishment for velocity and angle bonuses double rhythmSimilarity = 1 - getRhythmDifference(osuCurrObj.StrainTime, osuLastObj.StrainTime); // Make differentiation going from 1/4 to 1/2 and bigger difference // To 1/3 to 1/2 and smaller difference rhythmSimilarity = Math.Clamp(rhythmSimilarity, 0.5, 0.75); rhythmSimilarity = 4 * (rhythmSimilarity - 0.5); double velocityChangeBonus = getVelocityChangeFactor(osuCurrObj, osuLastObj) * rhythmSimilarity; double currVelocity = osuCurrObj.LazyJumpDistance / osuCurrObj.StrainTime; double prevVelocity = osuLastObj.LazyJumpDistance / osuLastObj.StrainTime; double angleChangeBonus = 0; if (osuCurrObj.Angle != null && osuLastObj.Angle != null && currVelocity > 0 && prevVelocity > 0) { angleChangeBonus = 1 - osuCurrObj.AnglePredictability; angleChangeBonus *= Math.Min(currVelocity, prevVelocity) / Math.Max(currVelocity, prevVelocity); // Prevent cheesing } angleChangeBonus *= rhythmSimilarity; // This bonus only awards rhythm changes if they're not filled with sliderends double rhythmChangeBonus = 0; if (current.Index > 1) { var osuLastLastObj = (OsuDifficultyHitObject)current.Previous(1); double currDelta = osuCurrObj.StrainTime; double lastDelta = osuLastObj.StrainTime; if (osuLastObj.BaseObject is Slider sliderCurr) { currDelta -= sliderCurr.Duration / osuCurrObj.ClockRate; currDelta = Math.Max(0, currDelta); } if (osuLastLastObj.BaseObject is Slider sliderLast) { lastDelta -= sliderLast.Duration / osuLastObj.ClockRate; lastDelta = Math.Max(0, lastDelta); } rhythmChangeBonus = getRhythmDifference(currDelta, lastDelta); } double result = velocity_change_part * velocityChangeBonus + angle_change_part * angleChangeBonus + rhythm_change_part * rhythmChangeBonus; return result; } private static double getVelocityChangeFactor(OsuDifficultyHitObject osuCurrObj, OsuDifficultyHitObject osuLastObj) { double currVelocity = osuCurrObj.LazyJumpDistance / osuCurrObj.StrainTime; double prevVelocity = osuLastObj.LazyJumpDistance / osuLastObj.StrainTime; double velocityChangeFactor = 0; // https://www.desmos.com/calculator/kqxmqc8pkg if (currVelocity > 0 || prevVelocity > 0) { double velocityChange = Math.Max(0, Math.Min( Math.Abs(prevVelocity - currVelocity) - 0.5 * Math.Min(currVelocity, prevVelocity), Math.Max(((OsuHitObject)osuCurrObj.BaseObject).Radius / Math.Max(osuCurrObj.StrainTime, osuLastObj.StrainTime), Math.Min(currVelocity, prevVelocity)) )); // Stealed from xexxar velocityChangeFactor = velocityChange / Math.Max(currVelocity, prevVelocity); // maxiumum is 0.4 velocityChangeFactor /= 0.4; } return velocityChangeFactor; } private static double getTimeNerfFactor(double deltaTime) => Math.Clamp(2 - deltaTime / (reading_window_size / 2), 0, 1); private static double getRhythmDifference(double t1, double t2) => 1 - Math.Min(t1, t2) / Math.Max(t1, t2); private static double logistic(double x) => 1 / (1 + Math.Exp(-x)); // Finds the overlapness of the last object for which StartTime lower than target private static double boundBinarySearch(List arr, double target) { int low = 0; int mid; int high = arr.Count; int result = -1; while (low < high) { mid = low + (high - low) / 2; if (arr[mid].HitObject.StartTime >= target) { result = mid; low = mid + 1; } else high = mid - 1; } if (result == -1) return 0; return arr[result].Overlapness; } } public static class ReadingHiddenEvaluator { public static double EvaluateDifficultyOf(DifficultyHitObject current) { var currObj = (OsuDifficultyHitObject)current; double density = ReadingEvaluator.EvaluateDensityOf(current, false, false); double preempt = currObj.Preempt / 1000; double densityFactor = Math.Pow(density / 6.2, 1.5); double invisibilityFactor; // AR11+DT and faster = 0 HD pp unless density is big if (preempt < 0.2) invisibilityFactor = 0; // Else accelerating growth until around ART0, then linear, and starting from AR5 is 3 times faster again to buff AR0 +HD else invisibilityFactor = Math.Min(Math.Pow(preempt * 2.4 - 0.2, 5), Math.Max(preempt, preempt * 3 - 2.4)); double hdDifficulty = invisibilityFactor + densityFactor; // Scale by inpredictability slightly hdDifficulty *= 0.96 + 0.1 * ReadingEvaluator.EvaluateInpredictabilityOf(current); // Max multiplier is 1.1 return hdDifficulty; } } public static class ReadingHighAREvaluator { public static double EvaluateDifficultyOf(DifficultyHitObject current, bool applyAdjust = false) { var currObj = (OsuDifficultyHitObject)current; double result = GetDifficulty(currObj.Preempt); if (applyAdjust) { double inpredictability = ReadingEvaluator.EvaluateInpredictabilityOf(current); // follow lines make high AR easier, so apply nerf if object isn't new combo inpredictability *= 1 + 0.1 * (800 - currObj.FollowLineTime) / 800; result *= 0.98 + 0.6 * inpredictability; } return result; } // High AR curve (this curve is without Math.Pow(value, 2)) // https://www.desmos.com/calculator/xuuwd77cbq public static double GetDifficulty(double preempt) { // Get preempt in seconds preempt /= 1000; double value; if (preempt < 0.375) // We have stop in the point of AR10.5, the value here = 0.396875, derivative = -10.5833, value = 0.63 * Math.Pow(8 - 20 * preempt, 2.0 / 3); // This function is matching live high AR bonus else value = Math.Exp(9.07583 - 80.0 * preempt / 3); return Math.Pow(value, 1.0 / ReadingHighAR.MECHANICAL_PP_POWER); } } }