mirror of
https://github.com/ppy/osu.git
synced 2025-01-29 01:22:54 +08:00
commit
cc79a183db
@ -13,7 +13,7 @@ namespace osu.Game.Modes.Osu.Objects
|
|||||||
private Vector2[] subdivisionBuffer1;
|
private Vector2[] subdivisionBuffer1;
|
||||||
private Vector2[] subdivisionBuffer2;
|
private Vector2[] subdivisionBuffer2;
|
||||||
|
|
||||||
private const float TOLERANCE = 0.5f;
|
private const float TOLERANCE = 0.25f;
|
||||||
private const float TOLERANCE_SQ = TOLERANCE * TOLERANCE;
|
private const float TOLERANCE_SQ = TOLERANCE * TOLERANCE;
|
||||||
|
|
||||||
public BezierApproximator(List<Vector2> controlPoints)
|
public BezierApproximator(List<Vector2> controlPoints)
|
||||||
@ -36,7 +36,7 @@ namespace osu.Game.Modes.Osu.Objects
|
|||||||
private static bool IsFlatEnough(Vector2[] controlPoints)
|
private static bool IsFlatEnough(Vector2[] controlPoints)
|
||||||
{
|
{
|
||||||
for (int i = 1; i < controlPoints.Length - 1; i++)
|
for (int i = 1; i < controlPoints.Length - 1; i++)
|
||||||
if ((controlPoints[i - 1] - 2 * controlPoints[i] + controlPoints[i + 1]).LengthSquared > TOLERANCE_SQ)
|
if ((controlPoints[i - 1] - 2 * controlPoints[i] + controlPoints[i + 1]).LengthSquared > TOLERANCE_SQ * 4)
|
||||||
return false;
|
return false;
|
||||||
|
|
||||||
return true;
|
return true;
|
||||||
@ -96,7 +96,6 @@ namespace osu.Game.Modes.Osu.Objects
|
|||||||
/// Creates a piecewise-linear approximation of a bezier curve, by adaptively repeatedly subdividing
|
/// Creates a piecewise-linear approximation of a bezier curve, by adaptively repeatedly subdividing
|
||||||
/// the control points until their approximation error vanishes below a given threshold.
|
/// the control points until their approximation error vanishes below a given threshold.
|
||||||
/// </summary>
|
/// </summary>
|
||||||
/// <param name="controlPoints">The control points describing the curve.</param>
|
|
||||||
/// <returns>A list of vectors representing the piecewise-linear approximation.</returns>
|
/// <returns>A list of vectors representing the piecewise-linear approximation.</returns>
|
||||||
public List<Vector2> CreateBezier()
|
public List<Vector2> CreateBezier()
|
||||||
{
|
{
|
||||||
|
102
osu.Game.Modes.Osu/Objects/CircularArcApproximator.cs
Normal file
102
osu.Game.Modes.Osu/Objects/CircularArcApproximator.cs
Normal file
@ -0,0 +1,102 @@
|
|||||||
|
//Copyright (c) 2007-2016 ppy Pty Ltd <contact@ppy.sh>.
|
||||||
|
//Licensed under the MIT Licence - https://raw.githubusercontent.com/ppy/osu/master/LICENCE
|
||||||
|
|
||||||
|
using OpenTK;
|
||||||
|
using osu.Framework.MathUtils;
|
||||||
|
using System;
|
||||||
|
using System.Collections.Generic;
|
||||||
|
|
||||||
|
namespace osu.Game.Modes.Osu.Objects
|
||||||
|
{
|
||||||
|
public class CircularArcApproximator
|
||||||
|
{
|
||||||
|
private Vector2 A;
|
||||||
|
private Vector2 B;
|
||||||
|
private Vector2 C;
|
||||||
|
|
||||||
|
private int amountPoints;
|
||||||
|
|
||||||
|
private const float TOLERANCE = 0.1f;
|
||||||
|
|
||||||
|
public CircularArcApproximator(Vector2 A, Vector2 B, Vector2 C)
|
||||||
|
{
|
||||||
|
this.A = A;
|
||||||
|
this.B = B;
|
||||||
|
this.C = C;
|
||||||
|
}
|
||||||
|
|
||||||
|
/// <summary>
|
||||||
|
/// Creates a piecewise-linear approximation of a circular arc curve.
|
||||||
|
/// </summary>
|
||||||
|
/// <returns>A list of vectors representing the piecewise-linear approximation.</returns>
|
||||||
|
public List<Vector2> CreateArc()
|
||||||
|
{
|
||||||
|
float aSq = (B - C).LengthSquared;
|
||||||
|
float bSq = (A - C).LengthSquared;
|
||||||
|
float cSq = (A - B).LengthSquared;
|
||||||
|
|
||||||
|
// If we have a degenerate triangle where a side-length is almost zero, then give up and fall
|
||||||
|
// back to a more numerically stable method.
|
||||||
|
if (Precision.AlmostEquals(aSq, 0) || Precision.AlmostEquals(bSq, 0) || Precision.AlmostEquals(cSq, 0))
|
||||||
|
return new List<Vector2>();
|
||||||
|
|
||||||
|
float s = aSq * (bSq + cSq - aSq);
|
||||||
|
float t = bSq * (aSq + cSq - bSq);
|
||||||
|
float u = cSq * (aSq + bSq - cSq);
|
||||||
|
|
||||||
|
float sum = s + t + u;
|
||||||
|
|
||||||
|
// If we have a degenerate triangle with an almost-zero size, then give up and fall
|
||||||
|
// back to a more numerically stable method.
|
||||||
|
if (Precision.AlmostEquals(sum, 0))
|
||||||
|
return new List<Vector2>();
|
||||||
|
|
||||||
|
Vector2 centre = (s * A + t * B + u * C) / sum;
|
||||||
|
Vector2 dA = A - centre;
|
||||||
|
Vector2 dC = C - centre;
|
||||||
|
|
||||||
|
float r = dA.Length;
|
||||||
|
|
||||||
|
double thetaStart = Math.Atan2(dA.Y, dA.X);
|
||||||
|
double thetaEnd = Math.Atan2(dC.Y, dC.X);
|
||||||
|
|
||||||
|
while (thetaEnd < thetaStart)
|
||||||
|
thetaEnd += 2 * Math.PI;
|
||||||
|
|
||||||
|
double dir = 1;
|
||||||
|
double thetaRange = thetaEnd - thetaStart;
|
||||||
|
|
||||||
|
// Decide in which direction to draw the circle, depending on which side of
|
||||||
|
// AC B lies.
|
||||||
|
Vector2 orthoAC = C - A;
|
||||||
|
orthoAC = new Vector2(orthoAC.Y, -orthoAC.X);
|
||||||
|
if (Vector2.Dot(orthoAC, B - A) < 0)
|
||||||
|
{
|
||||||
|
dir = -dir;
|
||||||
|
thetaRange = 2 * Math.PI - thetaRange;
|
||||||
|
}
|
||||||
|
|
||||||
|
// We select the amount of points for the approximation by requiring the discrete curvature
|
||||||
|
// to be smaller than the provided tolerance. The exact angle required to meet the tolerance
|
||||||
|
// is: 2 * Math.Acos(1 - TOLERANCE / r)
|
||||||
|
if (2 * r <= TOLERANCE)
|
||||||
|
// This special case is required for extremely short sliders where the radius is smaller than
|
||||||
|
// the tolerance. This is a pathological rather than a realistic case.
|
||||||
|
amountPoints = 2;
|
||||||
|
else
|
||||||
|
amountPoints = Math.Max(2, (int)Math.Ceiling(thetaRange / (2 * Math.Acos(1 - TOLERANCE / r))));
|
||||||
|
|
||||||
|
List<Vector2> output = new List<Vector2>(amountPoints);
|
||||||
|
|
||||||
|
for (int i = 0; i < amountPoints; ++i)
|
||||||
|
{
|
||||||
|
double fract = (double)i / (amountPoints - 1);
|
||||||
|
double theta = thetaStart + dir * fract * thetaRange;
|
||||||
|
Vector2 o = new Vector2((float)Math.Cos(theta), (float)Math.Sin(theta)) * r;
|
||||||
|
output.Add(centre + o);
|
||||||
|
}
|
||||||
|
|
||||||
|
return output;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
@ -83,7 +83,7 @@ namespace osu.Game.Modes.Osu.Objects
|
|||||||
|
|
||||||
s.Curve = new SliderCurve
|
s.Curve = new SliderCurve
|
||||||
{
|
{
|
||||||
Path = points,
|
ControlPoints = points,
|
||||||
Length = length,
|
Length = length,
|
||||||
CurveType = curveType
|
CurveType = curveType
|
||||||
};
|
};
|
||||||
|
@ -4,9 +4,8 @@
|
|||||||
using System.Collections.Generic;
|
using System.Collections.Generic;
|
||||||
using OpenTK;
|
using OpenTK;
|
||||||
using System.Linq;
|
using System.Linq;
|
||||||
using System.Diagnostics;
|
|
||||||
using osu.Framework.MathUtils;
|
using osu.Framework.MathUtils;
|
||||||
using System;
|
using System.Diagnostics;
|
||||||
|
|
||||||
namespace osu.Game.Modes.Osu.Objects
|
namespace osu.Game.Modes.Osu.Objects
|
||||||
{
|
{
|
||||||
@ -14,21 +13,39 @@ namespace osu.Game.Modes.Osu.Objects
|
|||||||
{
|
{
|
||||||
public double Length;
|
public double Length;
|
||||||
|
|
||||||
public List<Vector2> Path;
|
public List<Vector2> ControlPoints;
|
||||||
|
|
||||||
public CurveTypes CurveType;
|
public CurveTypes CurveType;
|
||||||
|
|
||||||
private List<Vector2> calculatedPath = new List<Vector2>();
|
private List<Vector2> calculatedPath = new List<Vector2>();
|
||||||
private List<double> cumulativeLength = new List<double>();
|
private List<double> cumulativeLength = new List<double>();
|
||||||
|
|
||||||
private List<Vector2> calculateSubpath(List<Vector2> subpath)
|
private List<Vector2> calculateSubpath(List<Vector2> subControlPoints)
|
||||||
{
|
{
|
||||||
switch (CurveType)
|
switch (CurveType)
|
||||||
{
|
{
|
||||||
case CurveTypes.Linear:
|
case CurveTypes.Linear:
|
||||||
return subpath;
|
return subControlPoints;
|
||||||
|
case CurveTypes.PerfectCurve:
|
||||||
|
// If we have a different amount than 3 control points, use bezier for perfect curves.
|
||||||
|
if (ControlPoints.Count != 3)
|
||||||
|
return new BezierApproximator(subControlPoints).CreateBezier();
|
||||||
|
else
|
||||||
|
{
|
||||||
|
Debug.Assert(subControlPoints.Count == 3);
|
||||||
|
|
||||||
|
// Here we have exactly 3 control points. Attempt to fit a circular arc.
|
||||||
|
List<Vector2> subpath = new CircularArcApproximator(subControlPoints[0], subControlPoints[1], subControlPoints[2]).CreateArc();
|
||||||
|
|
||||||
|
if (subpath.Count == 0)
|
||||||
|
// For some reason a circular arc could not be fit to the 3 given points. Fall back
|
||||||
|
// to a numerically stable bezier approximation.
|
||||||
|
subpath = new BezierApproximator(subControlPoints).CreateBezier();
|
||||||
|
|
||||||
|
return subpath;
|
||||||
|
}
|
||||||
default:
|
default:
|
||||||
return new BezierApproximator(subpath).CreateBezier();
|
return new BezierApproximator(subControlPoints).CreateBezier();
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -39,21 +56,19 @@ namespace osu.Game.Modes.Osu.Objects
|
|||||||
// Sliders may consist of various subpaths separated by two consecutive vertices
|
// Sliders may consist of various subpaths separated by two consecutive vertices
|
||||||
// with the same position. The following loop parses these subpaths and computes
|
// with the same position. The following loop parses these subpaths and computes
|
||||||
// their shape independently, consecutively appending them to calculatedPath.
|
// their shape independently, consecutively appending them to calculatedPath.
|
||||||
List<Vector2> subpath = new List<Vector2>();
|
List<Vector2> subControlPoints = new List<Vector2>();
|
||||||
for (int i = 0; i < Path.Count; ++i)
|
for (int i = 0; i < ControlPoints.Count; ++i)
|
||||||
{
|
{
|
||||||
subpath.Add(Path[i]);
|
subControlPoints.Add(ControlPoints[i]);
|
||||||
if (i == Path.Count - 1 || Path[i] == Path[i + 1])
|
if (i == ControlPoints.Count - 1 || ControlPoints[i] == ControlPoints[i + 1])
|
||||||
{
|
{
|
||||||
// If we already constructed a subpath previously, then the new subpath
|
List<Vector2> subpath = calculateSubpath(subControlPoints);
|
||||||
// will have as starting position the end position of the previous subpath.
|
for (int j = 0; j < subpath.Count; ++j)
|
||||||
// Hence we can and should remove the previous endpoint to avoid a segment
|
// Only add those vertices that add a new segment to the path.
|
||||||
// with 0 length.
|
if (calculatedPath.Count == 0 || calculatedPath.Last() != subpath[j])
|
||||||
if (calculatedPath.Count > 0)
|
calculatedPath.Add(subpath[j]);
|
||||||
calculatedPath.RemoveAt(calculatedPath.Count - 1);
|
|
||||||
|
|
||||||
calculatedPath.AddRange(calculateSubpath(subpath));
|
subControlPoints.Clear();
|
||||||
subpath.Clear();
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -42,6 +42,7 @@
|
|||||||
</ItemGroup>
|
</ItemGroup>
|
||||||
<ItemGroup>
|
<ItemGroup>
|
||||||
<Compile Include="Objects\BezierApproximator.cs" />
|
<Compile Include="Objects\BezierApproximator.cs" />
|
||||||
|
<Compile Include="Objects\CircularArcApproximator.cs" />
|
||||||
<Compile Include="Objects\Drawables\DrawableOsuHitObject.cs" />
|
<Compile Include="Objects\Drawables\DrawableOsuHitObject.cs" />
|
||||||
<Compile Include="Objects\Drawables\Pieces\ApproachCircle.cs" />
|
<Compile Include="Objects\Drawables\Pieces\ApproachCircle.cs" />
|
||||||
<Compile Include="Objects\Drawables\Pieces\CirclePiece.cs" />
|
<Compile Include="Objects\Drawables\Pieces\CirclePiece.cs" />
|
||||||
|
Loading…
Reference in New Issue
Block a user