1
0
mirror of https://github.com/ppy/osu.git synced 2025-01-28 09:02:58 +08:00

Merge branch 'aim-refactor-velocity' into aim-refactor-ppcalc

This commit is contained in:
Xexxar 2021-11-06 19:22:08 +00:00
commit 6f5cfe3268

View File

@ -2,6 +2,7 @@
// See the LICENCE file in the repository root for full licence text. // See the LICENCE file in the repository root for full licence text.
using System; using System;
using System.Diagnostics;
using System.Linq; using System.Linq;
using osu.Game.Rulesets.Difficulty.Preprocessing; using osu.Game.Rulesets.Difficulty.Preprocessing;
using osu.Game.Rulesets.Objects; using osu.Game.Rulesets.Objects;
@ -14,6 +15,8 @@ namespace osu.Game.Rulesets.Osu.Difficulty.Preprocessing
{ {
private const int normalized_radius = 50; // Change radius to 50 to make 100 the diameter. Easier for mental maths. private const int normalized_radius = 50; // Change radius to 50 to make 100 the diameter. Easier for mental maths.
private const int min_delta_time = 25; private const int min_delta_time = 25;
private const float maximum_slider_radius = normalized_radius * 2.4f;
private const float assumed_slider_radius = normalized_radius * 1.6f;
protected new OsuHitObject BaseObject => (OsuHitObject)base.BaseObject; protected new OsuHitObject BaseObject => (OsuHitObject)base.BaseObject;
@ -89,67 +92,9 @@ namespace osu.Game.Rulesets.Osu.Difficulty.Preprocessing
if (lastObject is Slider lastSlider) if (lastObject is Slider lastSlider)
{ {
computeSliderCursorPosition(lastSlider); computeSliderCursorPosition(lastSlider);
TravelDistance = 0; TravelDistance = lastSlider.LazyTravelDistance;
TravelTime = Math.Max(lastSlider.LazyTravelTime / clockRate, min_delta_time); TravelTime = Math.Max(lastSlider.LazyTravelTime / clockRate, min_delta_time);
MovementTime = Math.Max(StrainTime - TravelTime, min_delta_time); MovementTime = Math.Max(StrainTime - TravelTime, min_delta_time);
MovementDistance = Vector2.Subtract(lastSlider.TailCircle.StackedPosition, BaseObject.StackedPosition).Length * scalingFactor;
int repeatCount = 0;
Vector2 currSliderPosition = ((OsuHitObject)lastSlider.NestedHitObjects[0]).StackedPosition;
for (int i = 1; i < lastSlider.NestedHitObjects.Count; i++)
{
Vector2 currSlider = Vector2.Subtract(((OsuHitObject)lastSlider.NestedHitObjects[i]).StackedPosition, currSliderPosition);
double currSliderLength = currSlider.Length * scalingFactor;
if ((OsuHitObject)lastSlider.NestedHitObjects[i] is SliderEndCircle && !((OsuHitObject)lastSlider.NestedHitObjects[i] is SliderRepeat))
{
Vector2 possSlider = Vector2.Subtract((Vector2)lastSlider.LazyEndPosition, currSliderPosition);
if (possSlider.Length < currSlider.Length)
currSlider = possSlider; // Take the least distance from slider end vs lazy end.
currSliderLength = currSlider.Length * scalingFactor;
}
if ((OsuHitObject)lastSlider.NestedHitObjects[i] is SliderTick)
{
if (currSliderLength > 120)
{
currSliderPosition = Vector2.Add(currSliderPosition, Vector2.Multiply(currSlider, (float)((currSliderLength - 120) / currSliderLength)));
currSliderLength *= (currSliderLength - 120) / currSliderLength;
}
else
currSliderLength = 0;
}
else if ((OsuHitObject)lastSlider.NestedHitObjects[i] is SliderRepeat)
{
if (currSliderLength > 50)
{
currSliderPosition = Vector2.Add(currSliderPosition, Vector2.Multiply(currSlider, (float)((currSliderLength - 50) / currSliderLength)));
currSliderLength *= (currSliderLength - 50) / currSliderLength;
}
else
currSliderLength = 0;
}
else
{
if (currSliderLength > 0)
{
currSliderPosition = Vector2.Add(currSliderPosition, Vector2.Multiply(currSlider, (float)((currSliderLength - 0) / currSliderLength)));
currSliderLength *= (currSliderLength - 0) / currSliderLength;
}
else
currSliderLength = 0;
}
if ((OsuHitObject)lastSlider.NestedHitObjects[i] is SliderRepeat)
repeatCount++;
TravelDistance += currSliderLength;
}
TravelDistance *= Math.Pow(1 + repeatCount / 2.5, 1.0 / 2.5); // Bonus for repeat sliders until a better per nested object strain system can be achieved.
// Jump distance from the slider tail to the next object, as opposed to the lazy position of JumpDistance. // Jump distance from the slider tail to the next object, as opposed to the lazy position of JumpDistance.
float tailJumpDistance = Vector2.Subtract(lastSlider.TailCircle.StackedPosition, BaseObject.StackedPosition).Length * scalingFactor; float tailJumpDistance = Vector2.Subtract(lastSlider.TailCircle.StackedPosition, BaseObject.StackedPosition).Length * scalingFactor;
@ -158,8 +103,8 @@ namespace osu.Game.Rulesets.Osu.Difficulty.Preprocessing
// such that they're not jumping from the lazy position but rather from very close to (or the end of) the slider. // such that they're not jumping from the lazy position but rather from very close to (or the end of) the slider.
// In such cases, a leniency is applied by also considering the jump distance from the tail of the slider, and taking the minimum jump distance. // In such cases, a leniency is applied by also considering the jump distance from the tail of the slider, and taking the minimum jump distance.
// Additional distance is removed based on position of jump relative to slider follow circle radius. // Additional distance is removed based on position of jump relative to slider follow circle radius.
// JumpDistance is 50 since follow radius = 1.4 * radius. tailJumpDistance is 120 since the full distance of radial leniency is still possible. // JumpDistance is the distance beyond the s. tailJumpDistance is maximum_slider_radius since the full distance of radial leniency is still possible.
MovementDistance = Math.Max(0, Math.Min(JumpDistance - 50, tailJumpDistance - 120)); MovementDistance = Math.Max(0, Math.Min(JumpDistance - (maximum_slider_radius - assumed_slider_radius), tailJumpDistance - maximum_slider_radius));
} }
else else
{ {
@ -186,37 +131,64 @@ namespace osu.Game.Rulesets.Osu.Difficulty.Preprocessing
if (slider.LazyEndPosition != null) if (slider.LazyEndPosition != null)
return; return;
slider.LazyEndPosition = slider.StackedPosition; slider.LazyTravelTime = slider.NestedHitObjects[slider.NestedHitObjects.Count - 1].StartTime - slider.StartTime;
float approxFollowCircleRadius = (float)(slider.Radius * 1.4); // using 1.4 to better follow the real movement of a cursor. double endTimeMin = slider.LazyTravelTime / slider.SpanDuration;
var computeVertex = new Action<double>(t => if (endTimeMin % 2 >= 1)
{ endTimeMin = 1 - endTimeMin % 1;
double progress = (t - slider.StartTime) / slider.SpanDuration;
if (progress % 2 >= 1)
progress = 1 - progress % 1;
else else
progress %= 1; endTimeMin %= 1;
// ReSharper disable once PossibleInvalidOperationException (bugged in current r# version) slider.LazyEndPosition = slider.StackedPosition + slider.Path.PositionAt(endTimeMin); // temporary lazy end position until a real result can be derived.
var diff = slider.StackedPosition + slider.Path.PositionAt(progress) - slider.LazyEndPosition.Value; var currCursorPosition = slider.StackedPosition;
float dist = diff.Length; double scalingFactor = normalized_radius / slider.Radius; // lazySliderDistance is coded to be sensitive to scaling, this makes the maths easier with the thresholds being used.
slider.LazyTravelTime = t - slider.StartTime; for (int i = 1; i < slider.NestedHitObjects.Count; i++)
{
var currMovementObj = (OsuHitObject)slider.NestedHitObjects[i];
if (dist > approxFollowCircleRadius) Vector2 currMovement = Vector2.Subtract(currMovementObj.StackedPosition, currCursorPosition);
double currMovementLength = scalingFactor * currMovement.Length;
if (i == slider.NestedHitObjects.Count - 1)
{ {
// The cursor would be outside the follow circle, we need to move it // The end of a slider has special aim rules due to the relaxed time constraint on position.
diff.Normalize(); // Obtain direction of diff // There is both a lazy end position as well as the actual end slider position. We assume the player takes the simpler movement.
dist -= approxFollowCircleRadius; // For sliders that are circular, the lazy end position may actually be farther away than the sliders true end.
slider.LazyEndPosition += diff * dist; // This code is designed to prevent buffing situations where lazy end is actually a less efficient movement.
slider.LazyTravelDistance += dist; Vector2 lazyMovement = Vector2.Subtract((Vector2)slider.LazyEndPosition, currCursorPosition);
}
});
// Skip the head circle if (lazyMovement.Length < currMovement.Length)
var scoringTimes = slider.NestedHitObjects.Skip(1).Select(t => t.StartTime); currMovement = lazyMovement;
foreach (double time in scoringTimes)
computeVertex(time); currMovementLength = scalingFactor * currMovement.Length;
if (currMovementLength > assumed_slider_radius)
{
// Calculate the vector movement, regardless of final location to get the true lazy end position.
currCursorPosition = Vector2.Add(currCursorPosition, Vector2.Multiply(currMovement, (float)((currMovementLength - assumed_slider_radius) / currMovementLength)));
currMovementLength *= (currMovementLength - assumed_slider_radius) / currMovementLength;
slider.LazyTravelDistance += (float)currMovementLength;
}
slider.LazyEndPosition = currCursorPosition;
}
else if (currMovementObj is SliderRepeat && currMovementLength > normalized_radius)
{
// For a slider repeat, assume a tighter movement threshold to better assess repeat sliders.
currCursorPosition = Vector2.Add(currCursorPosition, Vector2.Multiply(currMovement, (float)((currMovementLength - normalized_radius) / currMovementLength)));
currMovementLength *= (currMovementLength - normalized_radius) / currMovementLength;
slider.LazyTravelDistance += (float)currMovementLength;
}
else if (currMovementLength > assumed_slider_radius)
{
// For a slider ticks, use the assumed slider radius for a more accurate movement assessment.
currCursorPosition = Vector2.Add(currCursorPosition, Vector2.Multiply(currMovement, (float)((currMovementLength - assumed_slider_radius) / currMovementLength)));
currMovementLength *= (currMovementLength - assumed_slider_radius) / currMovementLength;
slider.LazyTravelDistance += (float)currMovementLength;
}
}
slider.LazyTravelDistance *= (float)Math.Pow(1 + slider.RepeatCount / 2.5, 1.0 / 2.5); // Bonus for repeat sliders until a better per nested object strain system can be achieved.
} }
private Vector2 getEndCursorPosition(OsuHitObject hitObject) private Vector2 getEndCursorPosition(OsuHitObject hitObject)