From 59ab71f786f13e258479769f21065adfcaadd234 Mon Sep 17 00:00:00 2001 From: OliBomby Date: Fri, 20 Sep 2024 01:06:52 +0200 Subject: [PATCH] Implement minimum enclosing circle --- osu.Game/Utils/GeometryUtils.cs | 133 ++++++++++++++++++++++++++++++++ 1 file changed, 133 insertions(+) diff --git a/osu.Game/Utils/GeometryUtils.cs b/osu.Game/Utils/GeometryUtils.cs index 8572ac6609..7e6db10a28 100644 --- a/osu.Game/Utils/GeometryUtils.cs +++ b/osu.Game/Utils/GeometryUtils.cs @@ -6,6 +6,7 @@ using System.Collections.Generic; using System.Linq; using osu.Framework.Graphics; using osu.Framework.Graphics.Primitives; +using osu.Framework.Utils; using osu.Game.Rulesets.Objects.Types; using osuTK; @@ -218,5 +219,137 @@ namespace osu.Game.Utils return new[] { h.Position }; }); + + #region welzl_helpers + + // Function to check whether a point lies inside or on the boundaries of the circle + private static bool isInside((Vector2, float) c, Vector2 p) + { + return Precision.AlmostBigger(c.Item2, Vector2.Distance(c.Item1, p)); + } + + // Function to return a unique circle that intersects three points + private static (Vector2, float) circleFrom(Vector2 a, Vector2 b, Vector2 c) + { + if (Precision.AlmostEquals(0, (b.Y - a.Y) * (c.X - a.X) - (b.X - a.X) * (c.Y - a.Y))) + return circleFrom(a, b); + + // See: https://en.wikipedia.org/wiki/Circumscribed_circle#Cartesian_coordinates_2 + float d = 2 * (a.X * (b - c).Y + b.X * (c - a).Y + c.X * (a - b).Y); + float aSq = a.LengthSquared; + float bSq = b.LengthSquared; + float cSq = c.LengthSquared; + + var centre = new Vector2( + aSq * (b - c).Y + bSq * (c - a).Y + cSq * (a - b).Y, + aSq * (c - b).X + bSq * (a - c).X + cSq * (b - a).X) / d; + + return (centre, Vector2.Distance(a, centre)); + } + + // Function to return the smallest circle that intersects 2 points + private static (Vector2, float) circleFrom(Vector2 a, Vector2 b) + { + var centre = (a + b) / 2.0f; + return (centre, Vector2.Distance(a, b) / 2.0f); + } + + // Function to check whether a circle encloses the given points + private static bool isValidCircle((Vector2, float) c, ReadOnlySpan points) + { + // Iterating through all the points to check whether the points lie inside the circle or not + foreach (Vector2 p in points) + { + if (!isInside(c, p)) return false; + } + + return true; + } + + // Function to return the minimum enclosing circle for N <= 3 + private static (Vector2, float) minCircleTrivial(ReadOnlySpan points) + { + switch (points.Length) + { + case 0: + return (new Vector2(0, 0), 0); + + case 1: + return (points[0], 0); + + case 2: + return circleFrom(points[0], points[1]); + } + + // To check if MEC can be determined by 2 points only + for (int i = 0; i < 3; i++) + { + for (int j = i + 1; j < 3; j++) + { + var c = circleFrom(points[i], points[j]); + + if (isValidCircle(c, points)) + return c; + } + } + + return circleFrom(points[0], points[1], points[2]); + } + + // Returns the MEC using Welzl's algorithm + // Takes a set of input points P and a set R + // points on the circle boundary. + // n represents the number of points in P that are not yet processed. + private static (Vector2, float) welzlHelper(List points, ReadOnlySpan r, int n, Random random) + { + // Base case when all points processed or |R| = 3 + if (n == 0 || r.Length == 3) + return minCircleTrivial(r); + + // Pick a random point randomly + int idx = random.Next(n); + Vector2 p = points[idx]; + + // Put the picked point at the end of P since it's more efficient than + // deleting from the middle of the list + (points[idx], points[n - 1]) = (points[n - 1], points[idx]); + + // Get the MEC circle d from the set of points P - {p} + var d = welzlHelper(points, r, n - 1, random); + + // If d contains p, return d + if (isInside(d, p)) + return d; + + // Otherwise, must be on the boundary of the MEC + // Stackalloc to avoid allocations. It's safe to assume that the length of r will be at most 3 + Span r2 = stackalloc Vector2[r.Length + 1]; + r.CopyTo(r2); + r2[r.Length] = p; + + // Return the MEC for P - {p} and R U {p} + return welzlHelper(points, r2, n - 1, random); + } + + #endregion + + /// + /// Function to find the minimum enclosing circle for a collection of points. + /// + /// A tuple containing the circle center and radius. + public static (Vector2, float) MinimumEnclosingCircle(IEnumerable points) + { + // Using Welzl's algorithm to find the minimum enclosing circle + // https://www.geeksforgeeks.org/minimum-enclosing-circle-using-welzls-algorithm/ + List pCopy = points.ToList(); + return welzlHelper(pCopy, Array.Empty(), pCopy.Count, new Random()); + } + + /// + /// Function to find the minimum enclosing circle for a collection of hit objects. + /// + /// A tuple containing the circle center and radius. + public static (Vector2, float) MinimumEnclosingCircle(IEnumerable hitObjects) => + MinimumEnclosingCircle(enumerateStartAndEndPositions(hitObjects)); } }