mirror of
https://github.com/ppy/osu.git
synced 2025-01-28 16:52:55 +08:00
Add circular arc approximator for "perfect" sliders.
This commit is contained in:
parent
359cb5ac6a
commit
38968ad6d2
102
osu.Game.Modes.Osu/Objects/CircularArcApproximator.cs
Normal file
102
osu.Game.Modes.Osu/Objects/CircularArcApproximator.cs
Normal file
@ -0,0 +1,102 @@
|
||||
//Copyright (c) 2007-2016 ppy Pty Ltd <contact@ppy.sh>.
|
||||
//Licensed under the MIT Licence - https://raw.githubusercontent.com/ppy/osu/master/LICENCE
|
||||
|
||||
using OpenTK;
|
||||
using osu.Framework.MathUtils;
|
||||
using System;
|
||||
using System.Collections.Generic;
|
||||
|
||||
namespace osu.Game.Modes.Osu.Objects
|
||||
{
|
||||
public class CircularArcApproximator
|
||||
{
|
||||
private Vector2 A;
|
||||
private Vector2 B;
|
||||
private Vector2 C;
|
||||
|
||||
private int amountPoints;
|
||||
|
||||
private const float TOLERANCE = 0.1f;
|
||||
|
||||
public CircularArcApproximator(Vector2 A, Vector2 B, Vector2 C)
|
||||
{
|
||||
this.A = A;
|
||||
this.B = B;
|
||||
this.C = C;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Creates a piecewise-linear approximation of a circular arc curve.
|
||||
/// </summary>
|
||||
/// <returns>A list of vectors representing the piecewise-linear approximation.</returns>
|
||||
public List<Vector2> CreateArc()
|
||||
{
|
||||
float aSq = (B - C).LengthSquared;
|
||||
float bSq = (A - C).LengthSquared;
|
||||
float cSq = (A - B).LengthSquared;
|
||||
|
||||
// If we have a degenerate triangle where a side-length is almost zero, then give up and fall
|
||||
// back to a more numerically stable method.
|
||||
if (Precision.AlmostEquals(aSq, 0) || Precision.AlmostEquals(bSq, 0) || Precision.AlmostEquals(cSq, 0))
|
||||
return new List<Vector2>();
|
||||
|
||||
float s = aSq * (bSq + cSq - aSq);
|
||||
float t = bSq * (aSq + cSq - bSq);
|
||||
float u = cSq * (aSq + bSq - cSq);
|
||||
|
||||
float sum = s + t + u;
|
||||
|
||||
// If we have a degenerate triangle with an almost-zero size, then give up and fall
|
||||
// back to a more numerically stable method.
|
||||
if (Precision.AlmostEquals(sum, 0))
|
||||
return new List<Vector2>();
|
||||
|
||||
Vector2 centre = (s * A + t * B + u * C) / sum;
|
||||
Vector2 dA = A - centre;
|
||||
Vector2 dC = C - centre;
|
||||
|
||||
float r = dA.Length;
|
||||
|
||||
double thetaStart = Math.Atan2(dA.Y, dA.X);
|
||||
double thetaEnd = Math.Atan2(dC.Y, dC.X);
|
||||
|
||||
while (thetaEnd < thetaStart)
|
||||
thetaEnd += 2 * Math.PI;
|
||||
|
||||
double dir = 1;
|
||||
double thetaRange = thetaEnd - thetaStart;
|
||||
|
||||
// Decide in which direction to draw the circle, depending on which side of
|
||||
// AC B lies.
|
||||
Vector2 orthoAC = C - A;
|
||||
orthoAC = new Vector2(orthoAC.Y, -orthoAC.X);
|
||||
if (Vector2.Dot(orthoAC, B - A) < 0)
|
||||
{
|
||||
dir = -dir;
|
||||
thetaRange = 2 * Math.PI - thetaRange;
|
||||
}
|
||||
|
||||
// We select the amount of points for the approximation by requiring the discrete curvature
|
||||
// to be smaller than the provided tolerance. The exact angle required to meet the tolerance
|
||||
// is: 2 * Math.Acos(1 - TOLERANCE / r)
|
||||
if (2 * r <= TOLERANCE)
|
||||
// This special case is required for extremely short sliders where the radius is smaller than
|
||||
// the tolerance. This is a pathological rather than a realistic case.
|
||||
amountPoints = 2;
|
||||
else
|
||||
amountPoints = Math.Max(2, (int)Math.Ceiling(thetaRange / (2 * Math.Acos(1 - TOLERANCE / r))));
|
||||
|
||||
List<Vector2> output = new List<Vector2>(amountPoints);
|
||||
|
||||
for (int i = 0; i < amountPoints; ++i)
|
||||
{
|
||||
double fract = (double)i / (amountPoints - 1);
|
||||
double theta = thetaStart + dir * fract * thetaRange;
|
||||
Vector2 o = new Vector2((float)Math.Cos(theta), (float)Math.Sin(theta)) * r;
|
||||
output.Add(centre + o);
|
||||
}
|
||||
|
||||
return output;
|
||||
}
|
||||
}
|
||||
}
|
@ -83,7 +83,7 @@ namespace osu.Game.Modes.Osu.Objects
|
||||
|
||||
s.Curve = new SliderCurve
|
||||
{
|
||||
Path = points,
|
||||
ControlPoints = points,
|
||||
Length = length,
|
||||
CurveType = curveType
|
||||
};
|
||||
|
@ -4,9 +4,8 @@
|
||||
using System.Collections.Generic;
|
||||
using OpenTK;
|
||||
using System.Linq;
|
||||
using System.Diagnostics;
|
||||
using osu.Framework.MathUtils;
|
||||
using System;
|
||||
using System.Diagnostics;
|
||||
|
||||
namespace osu.Game.Modes.Osu.Objects
|
||||
{
|
||||
@ -14,21 +13,39 @@ namespace osu.Game.Modes.Osu.Objects
|
||||
{
|
||||
public double Length;
|
||||
|
||||
public List<Vector2> Path;
|
||||
public List<Vector2> ControlPoints;
|
||||
|
||||
public CurveTypes CurveType;
|
||||
|
||||
private List<Vector2> calculatedPath = new List<Vector2>();
|
||||
private List<double> cumulativeLength = new List<double>();
|
||||
|
||||
private List<Vector2> calculateSubpath(List<Vector2> subpath)
|
||||
private List<Vector2> calculateSubpath(List<Vector2> subControlPoints)
|
||||
{
|
||||
switch (CurveType)
|
||||
{
|
||||
case CurveTypes.Linear:
|
||||
return subpath;
|
||||
return subControlPoints;
|
||||
case CurveTypes.PerfectCurve:
|
||||
// If we have a different amount than 3 control points, use bezier for perfect curves.
|
||||
if (ControlPoints.Count != 3)
|
||||
return new BezierApproximator(subControlPoints).CreateBezier();
|
||||
else
|
||||
{
|
||||
Debug.Assert(subControlPoints.Count == 3);
|
||||
|
||||
// Here we have exactly 3 control points. Attempt to fit a circular arc.
|
||||
List<Vector2> subpath = new CircularArcApproximator(subControlPoints[0], subControlPoints[1], subControlPoints[2]).CreateArc();
|
||||
|
||||
if (subpath.Count == 0)
|
||||
// For some reason a circular arc could not be fit to the 3 given points. Fall back
|
||||
// to a numerically stable bezier approximation.
|
||||
subpath = new BezierApproximator(subControlPoints).CreateBezier();
|
||||
|
||||
return subpath;
|
||||
}
|
||||
default:
|
||||
return new BezierApproximator(subpath).CreateBezier();
|
||||
return new BezierApproximator(subControlPoints).CreateBezier();
|
||||
}
|
||||
}
|
||||
|
||||
@ -39,21 +56,19 @@ namespace osu.Game.Modes.Osu.Objects
|
||||
// Sliders may consist of various subpaths separated by two consecutive vertices
|
||||
// with the same position. The following loop parses these subpaths and computes
|
||||
// their shape independently, consecutively appending them to calculatedPath.
|
||||
List<Vector2> subpath = new List<Vector2>();
|
||||
for (int i = 0; i < Path.Count; ++i)
|
||||
List<Vector2> subControlPoints = new List<Vector2>();
|
||||
for (int i = 0; i < ControlPoints.Count; ++i)
|
||||
{
|
||||
subpath.Add(Path[i]);
|
||||
if (i == Path.Count - 1 || Path[i] == Path[i + 1])
|
||||
subControlPoints.Add(ControlPoints[i]);
|
||||
if (i == ControlPoints.Count - 1 || ControlPoints[i] == ControlPoints[i + 1])
|
||||
{
|
||||
// If we already constructed a subpath previously, then the new subpath
|
||||
// will have as starting position the end position of the previous subpath.
|
||||
// Hence we can and should remove the previous endpoint to avoid a segment
|
||||
// with 0 length.
|
||||
if (calculatedPath.Count > 0)
|
||||
calculatedPath.RemoveAt(calculatedPath.Count - 1);
|
||||
List<Vector2> subpath = calculateSubpath(subControlPoints);
|
||||
for (int j = 0; j < subpath.Count; ++j)
|
||||
// Only add those vertices that add a new segment to the path.
|
||||
if (calculatedPath.Count == 0 || calculatedPath.Last() != subpath[j])
|
||||
calculatedPath.Add(subpath[j]);
|
||||
|
||||
calculatedPath.AddRange(calculateSubpath(subpath));
|
||||
subpath.Clear();
|
||||
subControlPoints.Clear();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -42,6 +42,7 @@
|
||||
</ItemGroup>
|
||||
<ItemGroup>
|
||||
<Compile Include="Objects\BezierApproximator.cs" />
|
||||
<Compile Include="Objects\CircularArcApproximator.cs" />
|
||||
<Compile Include="Objects\Drawables\DrawableOsuHitObject.cs" />
|
||||
<Compile Include="Objects\Drawables\Pieces\ApproachCircle.cs" />
|
||||
<Compile Include="Objects\Drawables\Pieces\CirclePiece.cs" />
|
||||
|
Loading…
Reference in New Issue
Block a user