1
0
mirror of https://github.com/ppy/osu.git synced 2025-01-12 08:03:11 +08:00

Remove Masking from PositionSnapGrid

This caused issues in rendering the outline of the grid because the outline was getting masked at some resolutions.
This commit is contained in:
OliBomby 2024-02-01 16:56:57 +01:00
parent 09852bc46b
commit 236f029dad
2 changed files with 106 additions and 24 deletions

View File

@ -15,18 +15,29 @@ namespace osu.Game.Screens.Edit.Compose.Components
{
protected void GenerateGridLines(Vector2 step, Vector2 drawSize)
{
if (Precision.AlmostEquals(step, Vector2.Zero))
return;
int index = 0;
var currentPosition = StartPosition.Value;
// Make lines the same width independent of display resolution.
float lineWidth = DrawWidth / ScreenSpaceDrawQuad.Width;
float lineLength = drawSize.Length * 2;
float rotation = MathHelper.RadiansToDegrees(MathF.Atan2(step.Y, step.X));
List<Box> generatedLines = new List<Box>();
while (lineDefinitelyIntersectsBox(currentPosition, step.PerpendicularLeft, drawSize) ||
isMovingTowardsBox(currentPosition, step, drawSize))
while (true)
{
Vector2 currentPosition = StartPosition.Value + index++ * step;
if (!lineDefinitelyIntersectsBox(currentPosition, step.PerpendicularLeft, drawSize, out var p1, out var p2))
{
if (!isMovingTowardsBox(currentPosition, step, drawSize))
break;
continue;
}
var gridLine = new Box
{
Colour = Colour4.White,
@ -34,15 +45,12 @@ namespace osu.Game.Screens.Edit.Compose.Components
Origin = Anchor.Centre,
RelativeSizeAxes = Axes.None,
Width = lineWidth,
Height = lineLength,
Position = currentPosition,
Rotation = MathHelper.RadiansToDegrees(MathF.Atan2(step.Y, step.X)),
Height = Vector2.Distance(p1, p2),
Position = (p1 + p2) / 2,
Rotation = rotation,
};
generatedLines.Add(gridLine);
index += 1;
currentPosition = StartPosition.Value + index * step;
}
if (generatedLines.Count == 0)
@ -59,23 +67,99 @@ namespace osu.Game.Screens.Edit.Compose.Components
(currentPosition + step - box).LengthSquared < (currentPosition - box).LengthSquared;
}
private bool lineDefinitelyIntersectsBox(Vector2 lineStart, Vector2 lineDir, Vector2 box)
/// <summary>
/// Determines if the line starting at <paramref name="lineStart"/> and going in the direction of <paramref name="lineDir"/>
/// definitely intersects the box on (0, 0) with the given width and height and returns the intersection points if it does.
/// </summary>
/// <param name="lineStart">The start point of the line.</param>
/// <param name="lineDir">The direction of the line.</param>
/// <param name="box">The width and height of the box.</param>
/// <param name="p1">The first intersection point.</param>
/// <param name="p2">The second intersection point.</param>
/// <returns>Whether the line definitely intersects the box.</returns>
private bool lineDefinitelyIntersectsBox(Vector2 lineStart, Vector2 lineDir, Vector2 box, out Vector2 p1, out Vector2 p2)
{
var p2 = lineStart + lineDir;
p1 = Vector2.Zero;
p2 = Vector2.Zero;
double d1 = det(Vector2.Zero);
double d2 = det(new Vector2(box.X, 0));
double d3 = det(new Vector2(0, box.Y));
double d4 = det(box);
if (Precision.AlmostEquals(lineDir.X, 0))
{
// If the line is vertical, we only need to check if the X coordinate of the line is within the box.
if (!Precision.DefinitelyBigger(lineStart.X, 0) || !Precision.DefinitelyBigger(box.X, lineStart.X))
return false;
return definitelyDifferentSign(d1, d2) || definitelyDifferentSign(d3, d4) ||
definitelyDifferentSign(d1, d3) || definitelyDifferentSign(d2, d4);
p1 = new Vector2(lineStart.X, 0);
p2 = new Vector2(lineStart.X, box.Y);
return true;
}
double det(Vector2 p) => (p.X - lineStart.X) * (p2.Y - lineStart.Y) - (p.Y - lineStart.Y) * (p2.X - lineStart.X);
if (Precision.AlmostEquals(lineDir.Y, 0))
{
// If the line is horizontal, we only need to check if the Y coordinate of the line is within the box.
if (!Precision.DefinitelyBigger(lineStart.Y, 0) || !Precision.DefinitelyBigger(box.Y, lineStart.Y))
return false;
bool definitelyDifferentSign(double a, double b) => !Precision.AlmostEquals(a, 0) &&
!Precision.AlmostEquals(b, 0) &&
Math.Sign(a) != Math.Sign(b);
p1 = new Vector2(0, lineStart.Y);
p2 = new Vector2(box.X, lineStart.Y);
return true;
}
float m = lineDir.Y / lineDir.X;
float mInv = lineDir.X / lineDir.Y; // Use this to improve numerical stability if X is close to zero.
float b = lineStart.Y - m * lineStart.X;
// Calculate intersection points with the sides of the box.
var p = new List<Vector2>(4);
if (0 <= b && b <= box.Y)
p.Add(new Vector2(0, b));
if (0 <= (box.Y - b) * mInv && (box.Y - b) * mInv <= box.X)
p.Add(new Vector2((box.Y - b) * mInv, box.Y));
if (0 <= m * box.X + b && m * box.X + b <= box.Y)
p.Add(new Vector2(box.X, m * box.X + b));
if (0 <= -b * mInv && -b * mInv <= box.X)
p.Add(new Vector2(-b * mInv, 0));
switch (p.Count)
{
case 4:
// If there are 4 intersection points, the line is a diagonal of the box.
if (m > 0)
{
p1 = Vector2.Zero;
p2 = box;
}
else
{
p1 = new Vector2(0, box.Y);
p2 = new Vector2(box.X, 0);
}
break;
case 3:
// If there are 3 intersection points, the line goes through a corner of the box.
if (p[0] == p[1])
{
p1 = p[0];
p2 = p[2];
}
else
{
p1 = p[0];
p2 = p[1];
}
break;
case 2:
p1 = p[0];
p2 = p[1];
break;
}
return !Precision.AlmostEquals(p1, p2);
}
}
}

View File

@ -21,8 +21,6 @@ namespace osu.Game.Screens.Edit.Compose.Components
protected PositionSnapGrid()
{
Masking = true;
StartPosition.BindValueChanged(_ => GridCache.Invalidate());
AddLayout(GridCache);