mirror of
https://github.com/ppy/osu.git
synced 2025-01-22 17:12:54 +08:00
Make approximators share an interface
This commit is contained in:
parent
c1304eca1b
commit
1aae123ff5
@ -163,10 +163,10 @@ namespace osu.Game.Rulesets.Osu.Edit.Masks.SliderMasks
|
|||||||
{
|
{
|
||||||
case 1:
|
case 1:
|
||||||
case 2:
|
case 2:
|
||||||
result = new LinearApproximator(allControlPoints).CreateLinear();
|
result = new LinearApproximator().Approximate(allControlPoints);
|
||||||
break;
|
break;
|
||||||
default:
|
default:
|
||||||
result = new BezierApproximator(allControlPoints).CreateBezier();
|
result = new BezierApproximator().Approximate(allControlPoints);
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -7,23 +7,72 @@ using OpenTK;
|
|||||||
|
|
||||||
namespace osu.Game.Rulesets.Objects
|
namespace osu.Game.Rulesets.Objects
|
||||||
{
|
{
|
||||||
public readonly ref struct BezierApproximator
|
public struct BezierApproximator : IApproximator
|
||||||
{
|
{
|
||||||
private readonly int count;
|
|
||||||
private readonly ReadOnlySpan<Vector2> controlPoints;
|
|
||||||
private readonly Vector2[] subdivisionBuffer1;
|
|
||||||
private readonly Vector2[] subdivisionBuffer2;
|
|
||||||
|
|
||||||
private const float tolerance = 0.25f;
|
private const float tolerance = 0.25f;
|
||||||
private const float tolerance_sq = tolerance * tolerance;
|
private const float tolerance_sq = tolerance * tolerance;
|
||||||
|
|
||||||
public BezierApproximator(ReadOnlySpan<Vector2> controlPoints)
|
private int count;
|
||||||
|
private Vector2[] subdivisionBuffer1;
|
||||||
|
private Vector2[] subdivisionBuffer2;
|
||||||
|
|
||||||
|
/// <summary>
|
||||||
|
/// Creates a piecewise-linear approximation of a bezier curve, by adaptively repeatedly subdividing
|
||||||
|
/// the control points until their approximation error vanishes below a given threshold.
|
||||||
|
/// </summary>
|
||||||
|
/// <returns>A list of vectors representing the piecewise-linear approximation.</returns>
|
||||||
|
public List<Vector2> Approximate(ReadOnlySpan<Vector2> controlPoints)
|
||||||
{
|
{
|
||||||
this.controlPoints = controlPoints;
|
List<Vector2> output = new List<Vector2>();
|
||||||
count = controlPoints.Length;
|
count = controlPoints.Length;
|
||||||
|
|
||||||
|
if (count == 0)
|
||||||
|
return output;
|
||||||
|
|
||||||
subdivisionBuffer1 = new Vector2[count];
|
subdivisionBuffer1 = new Vector2[count];
|
||||||
subdivisionBuffer2 = new Vector2[count * 2 - 1];
|
subdivisionBuffer2 = new Vector2[count * 2 - 1];
|
||||||
|
|
||||||
|
Stack<Vector2[]> toFlatten = new Stack<Vector2[]>();
|
||||||
|
Stack<Vector2[]> freeBuffers = new Stack<Vector2[]>();
|
||||||
|
|
||||||
|
// "toFlatten" contains all the curves which are not yet approximated well enough.
|
||||||
|
// We use a stack to emulate recursion without the risk of running into a stack overflow.
|
||||||
|
// (More specifically, we iteratively and adaptively refine our curve with a
|
||||||
|
// <a href="https://en.wikipedia.org/wiki/Depth-first_search">Depth-first search</a>
|
||||||
|
// over the tree resulting from the subdivisions we make.)
|
||||||
|
toFlatten.Push(controlPoints.ToArray());
|
||||||
|
|
||||||
|
Vector2[] leftChild = subdivisionBuffer2;
|
||||||
|
|
||||||
|
while (toFlatten.Count > 0)
|
||||||
|
{
|
||||||
|
Vector2[] parent = toFlatten.Pop();
|
||||||
|
if (isFlatEnough(parent))
|
||||||
|
{
|
||||||
|
// If the control points we currently operate on are sufficiently "flat", we use
|
||||||
|
// an extension to De Casteljau's algorithm to obtain a piecewise-linear approximation
|
||||||
|
// of the bezier curve represented by our control points, consisting of the same amount
|
||||||
|
// of points as there are control points.
|
||||||
|
approximate(parent, output);
|
||||||
|
freeBuffers.Push(parent);
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
|
||||||
|
// If we do not yet have a sufficiently "flat" (in other words, detailed) approximation we keep
|
||||||
|
// subdividing the curve we are currently operating on.
|
||||||
|
Vector2[] rightChild = freeBuffers.Count > 0 ? freeBuffers.Pop() : new Vector2[count];
|
||||||
|
subdivide(parent, leftChild, rightChild);
|
||||||
|
|
||||||
|
// We re-use the buffer of the parent for one of the children, so that we save one allocation per iteration.
|
||||||
|
for (int i = 0; i < count; ++i)
|
||||||
|
parent[i] = leftChild[i];
|
||||||
|
|
||||||
|
toFlatten.Push(rightChild);
|
||||||
|
toFlatten.Push(parent);
|
||||||
|
}
|
||||||
|
|
||||||
|
output.Add(controlPoints[count - 1]);
|
||||||
|
return output;
|
||||||
}
|
}
|
||||||
|
|
||||||
/// <summary>
|
/// <summary>
|
||||||
@ -92,60 +141,5 @@ namespace osu.Game.Rulesets.Objects
|
|||||||
output.Add(p);
|
output.Add(p);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
/// <summary>
|
|
||||||
/// Creates a piecewise-linear approximation of a bezier curve, by adaptively repeatedly subdividing
|
|
||||||
/// the control points until their approximation error vanishes below a given threshold.
|
|
||||||
/// </summary>
|
|
||||||
/// <returns>A list of vectors representing the piecewise-linear approximation.</returns>
|
|
||||||
public List<Vector2> CreateBezier()
|
|
||||||
{
|
|
||||||
List<Vector2> output = new List<Vector2>();
|
|
||||||
|
|
||||||
if (count == 0)
|
|
||||||
return output;
|
|
||||||
|
|
||||||
Stack<Vector2[]> toFlatten = new Stack<Vector2[]>();
|
|
||||||
Stack<Vector2[]> freeBuffers = new Stack<Vector2[]>();
|
|
||||||
|
|
||||||
// "toFlatten" contains all the curves which are not yet approximated well enough.
|
|
||||||
// We use a stack to emulate recursion without the risk of running into a stack overflow.
|
|
||||||
// (More specifically, we iteratively and adaptively refine our curve with a
|
|
||||||
// <a href="https://en.wikipedia.org/wiki/Depth-first_search">Depth-first search</a>
|
|
||||||
// over the tree resulting from the subdivisions we make.)
|
|
||||||
toFlatten.Push(controlPoints.ToArray());
|
|
||||||
|
|
||||||
Vector2[] leftChild = subdivisionBuffer2;
|
|
||||||
|
|
||||||
while (toFlatten.Count > 0)
|
|
||||||
{
|
|
||||||
Vector2[] parent = toFlatten.Pop();
|
|
||||||
if (isFlatEnough(parent))
|
|
||||||
{
|
|
||||||
// If the control points we currently operate on are sufficiently "flat", we use
|
|
||||||
// an extension to De Casteljau's algorithm to obtain a piecewise-linear approximation
|
|
||||||
// of the bezier curve represented by our control points, consisting of the same amount
|
|
||||||
// of points as there are control points.
|
|
||||||
approximate(parent, output);
|
|
||||||
freeBuffers.Push(parent);
|
|
||||||
continue;
|
|
||||||
}
|
|
||||||
|
|
||||||
// If we do not yet have a sufficiently "flat" (in other words, detailed) approximation we keep
|
|
||||||
// subdividing the curve we are currently operating on.
|
|
||||||
Vector2[] rightChild = freeBuffers.Count > 0 ? freeBuffers.Pop() : new Vector2[count];
|
|
||||||
subdivide(parent, leftChild, rightChild);
|
|
||||||
|
|
||||||
// We re-use the buffer of the parent for one of the children, so that we save one allocation per iteration.
|
|
||||||
for (int i = 0; i < count; ++i)
|
|
||||||
parent[i] = leftChild[i];
|
|
||||||
|
|
||||||
toFlatten.Push(rightChild);
|
|
||||||
toFlatten.Push(parent);
|
|
||||||
}
|
|
||||||
|
|
||||||
output.Add(controlPoints[count - 1]);
|
|
||||||
return output;
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -7,25 +7,18 @@ using OpenTK;
|
|||||||
|
|
||||||
namespace osu.Game.Rulesets.Objects
|
namespace osu.Game.Rulesets.Objects
|
||||||
{
|
{
|
||||||
public readonly ref struct CatmullApproximator
|
public readonly struct CatmullApproximator : IApproximator
|
||||||
{
|
{
|
||||||
/// <summary>
|
/// <summary>
|
||||||
/// The amount of pieces to calculate for each controlpoint quadruplet.
|
/// The amount of pieces to calculate for each controlpoint quadruplet.
|
||||||
/// </summary>
|
/// </summary>
|
||||||
private const int detail = 50;
|
private const int detail = 50;
|
||||||
|
|
||||||
private readonly ReadOnlySpan<Vector2> controlPoints;
|
|
||||||
|
|
||||||
public CatmullApproximator(ReadOnlySpan<Vector2> controlPoints)
|
|
||||||
{
|
|
||||||
this.controlPoints = controlPoints;
|
|
||||||
}
|
|
||||||
|
|
||||||
/// <summary>
|
/// <summary>
|
||||||
/// Creates a piecewise-linear approximation of a Catmull-Rom spline.
|
/// Creates a piecewise-linear approximation of a Catmull-Rom spline.
|
||||||
/// </summary>
|
/// </summary>
|
||||||
/// <returns>A list of vectors representing the piecewise-linear approximation.</returns>
|
/// <returns>A list of vectors representing the piecewise-linear approximation.</returns>
|
||||||
public List<Vector2> CreateCatmull()
|
public List<Vector2> Approximate(ReadOnlySpan<Vector2> controlPoints)
|
||||||
{
|
{
|
||||||
var result = new List<Vector2>((controlPoints.Length - 1) * detail * 2);
|
var result = new List<Vector2>((controlPoints.Length - 1) * detail * 2);
|
||||||
|
|
||||||
|
@ -8,22 +8,15 @@ using OpenTK;
|
|||||||
|
|
||||||
namespace osu.Game.Rulesets.Objects
|
namespace osu.Game.Rulesets.Objects
|
||||||
{
|
{
|
||||||
public readonly ref struct CircularArcApproximator
|
public readonly struct CircularArcApproximator : IApproximator
|
||||||
{
|
{
|
||||||
private const float tolerance = 0.1f;
|
private const float tolerance = 0.1f;
|
||||||
|
|
||||||
private readonly ReadOnlySpan<Vector2> controlPoints;
|
|
||||||
|
|
||||||
public CircularArcApproximator(ReadOnlySpan<Vector2> controlPoints)
|
|
||||||
{
|
|
||||||
this.controlPoints = controlPoints;
|
|
||||||
}
|
|
||||||
|
|
||||||
/// <summary>
|
/// <summary>
|
||||||
/// Creates a piecewise-linear approximation of a circular arc curve.
|
/// Creates a piecewise-linear approximation of a circular arc curve.
|
||||||
/// </summary>
|
/// </summary>
|
||||||
/// <returns>A list of vectors representing the piecewise-linear approximation.</returns>
|
/// <returns>A list of vectors representing the piecewise-linear approximation.</returns>
|
||||||
public List<Vector2> CreateArc()
|
public List<Vector2> Approximate(ReadOnlySpan<Vector2> controlPoints)
|
||||||
{
|
{
|
||||||
Vector2 a = controlPoints[0];
|
Vector2 a = controlPoints[0];
|
||||||
Vector2 b = controlPoints[1];
|
Vector2 b = controlPoints[1];
|
||||||
|
19
osu.Game/Rulesets/Objects/IApproximator.cs
Normal file
19
osu.Game/Rulesets/Objects/IApproximator.cs
Normal file
@ -0,0 +1,19 @@
|
|||||||
|
// Copyright (c) 2007-2018 ppy Pty Ltd <contact@ppy.sh>.
|
||||||
|
// Licensed under the MIT Licence - https://raw.githubusercontent.com/ppy/osu/master/LICENCE
|
||||||
|
|
||||||
|
using System;
|
||||||
|
using System.Collections.Generic;
|
||||||
|
using OpenTK;
|
||||||
|
|
||||||
|
namespace osu.Game.Rulesets.Objects
|
||||||
|
{
|
||||||
|
public interface IApproximator
|
||||||
|
{
|
||||||
|
/// <summary>
|
||||||
|
/// Approximates a path by interpolating a sequence of control points.
|
||||||
|
/// </summary>
|
||||||
|
/// <param name="controlPoints">The control points of the path.</param>
|
||||||
|
/// <returns>A set of points that lie on the path.</returns>
|
||||||
|
List<Vector2> Approximate(ReadOnlySpan<Vector2> controlPoints);
|
||||||
|
}
|
||||||
|
}
|
@ -7,16 +7,9 @@ using OpenTK;
|
|||||||
|
|
||||||
namespace osu.Game.Rulesets.Objects
|
namespace osu.Game.Rulesets.Objects
|
||||||
{
|
{
|
||||||
public readonly ref struct LinearApproximator
|
public readonly struct LinearApproximator : IApproximator
|
||||||
{
|
{
|
||||||
private readonly ReadOnlySpan<Vector2> controlPoints;
|
public List<Vector2> Approximate(ReadOnlySpan<Vector2> controlPoints)
|
||||||
|
|
||||||
public LinearApproximator(ReadOnlySpan<Vector2> controlPoints)
|
|
||||||
{
|
|
||||||
this.controlPoints = controlPoints;
|
|
||||||
}
|
|
||||||
|
|
||||||
public List<Vector2> CreateLinear()
|
|
||||||
{
|
{
|
||||||
var result = new List<Vector2>(controlPoints.Length);
|
var result = new List<Vector2>(controlPoints.Length);
|
||||||
|
|
||||||
|
@ -28,14 +28,14 @@ namespace osu.Game.Rulesets.Objects
|
|||||||
switch (PathType)
|
switch (PathType)
|
||||||
{
|
{
|
||||||
case PathType.Linear:
|
case PathType.Linear:
|
||||||
return new LinearApproximator(subControlPoints).CreateLinear();
|
return new LinearApproximator().Approximate(subControlPoints);
|
||||||
case PathType.PerfectCurve:
|
case PathType.PerfectCurve:
|
||||||
//we can only use CircularArc iff we have exactly three control points and no dissection.
|
//we can only use CircularArc iff we have exactly three control points and no dissection.
|
||||||
if (ControlPoints.Length != 3 || subControlPoints.Length != 3)
|
if (ControlPoints.Length != 3 || subControlPoints.Length != 3)
|
||||||
break;
|
break;
|
||||||
|
|
||||||
// Here we have exactly 3 control points. Attempt to fit a circular arc.
|
// Here we have exactly 3 control points. Attempt to fit a circular arc.
|
||||||
List<Vector2> subpath = new CircularArcApproximator(subControlPoints).CreateArc();
|
List<Vector2> subpath = new CircularArcApproximator().Approximate(subControlPoints);
|
||||||
|
|
||||||
// If for some reason a circular arc could not be fit to the 3 given points, fall back to a numerically stable bezier approximation.
|
// If for some reason a circular arc could not be fit to the 3 given points, fall back to a numerically stable bezier approximation.
|
||||||
if (subpath.Count == 0)
|
if (subpath.Count == 0)
|
||||||
@ -43,10 +43,10 @@ namespace osu.Game.Rulesets.Objects
|
|||||||
|
|
||||||
return subpath;
|
return subpath;
|
||||||
case PathType.Catmull:
|
case PathType.Catmull:
|
||||||
return new CatmullApproximator(subControlPoints).CreateCatmull();
|
return new CatmullApproximator().Approximate(subControlPoints);
|
||||||
}
|
}
|
||||||
|
|
||||||
return new BezierApproximator(subControlPoints).CreateBezier();
|
return new BezierApproximator().Approximate(subControlPoints);
|
||||||
}
|
}
|
||||||
|
|
||||||
private void calculatePath()
|
private void calculatePath()
|
||||||
|
Loading…
Reference in New Issue
Block a user