mirror of
https://github.com/ppy/osu.git
synced 2024-12-14 04:02:55 +08:00
Make approximators share an interface
This commit is contained in:
parent
c1304eca1b
commit
1aae123ff5
@ -163,10 +163,10 @@ namespace osu.Game.Rulesets.Osu.Edit.Masks.SliderMasks
|
||||
{
|
||||
case 1:
|
||||
case 2:
|
||||
result = new LinearApproximator(allControlPoints).CreateLinear();
|
||||
result = new LinearApproximator().Approximate(allControlPoints);
|
||||
break;
|
||||
default:
|
||||
result = new BezierApproximator(allControlPoints).CreateBezier();
|
||||
result = new BezierApproximator().Approximate(allControlPoints);
|
||||
break;
|
||||
}
|
||||
|
||||
|
@ -7,23 +7,72 @@ using OpenTK;
|
||||
|
||||
namespace osu.Game.Rulesets.Objects
|
||||
{
|
||||
public readonly ref struct BezierApproximator
|
||||
public struct BezierApproximator : IApproximator
|
||||
{
|
||||
private readonly int count;
|
||||
private readonly ReadOnlySpan<Vector2> controlPoints;
|
||||
private readonly Vector2[] subdivisionBuffer1;
|
||||
private readonly Vector2[] subdivisionBuffer2;
|
||||
|
||||
private const float tolerance = 0.25f;
|
||||
private const float tolerance_sq = tolerance * tolerance;
|
||||
|
||||
public BezierApproximator(ReadOnlySpan<Vector2> controlPoints)
|
||||
private int count;
|
||||
private Vector2[] subdivisionBuffer1;
|
||||
private Vector2[] subdivisionBuffer2;
|
||||
|
||||
/// <summary>
|
||||
/// Creates a piecewise-linear approximation of a bezier curve, by adaptively repeatedly subdividing
|
||||
/// the control points until their approximation error vanishes below a given threshold.
|
||||
/// </summary>
|
||||
/// <returns>A list of vectors representing the piecewise-linear approximation.</returns>
|
||||
public List<Vector2> Approximate(ReadOnlySpan<Vector2> controlPoints)
|
||||
{
|
||||
this.controlPoints = controlPoints;
|
||||
List<Vector2> output = new List<Vector2>();
|
||||
count = controlPoints.Length;
|
||||
|
||||
if (count == 0)
|
||||
return output;
|
||||
|
||||
subdivisionBuffer1 = new Vector2[count];
|
||||
subdivisionBuffer2 = new Vector2[count * 2 - 1];
|
||||
|
||||
Stack<Vector2[]> toFlatten = new Stack<Vector2[]>();
|
||||
Stack<Vector2[]> freeBuffers = new Stack<Vector2[]>();
|
||||
|
||||
// "toFlatten" contains all the curves which are not yet approximated well enough.
|
||||
// We use a stack to emulate recursion without the risk of running into a stack overflow.
|
||||
// (More specifically, we iteratively and adaptively refine our curve with a
|
||||
// <a href="https://en.wikipedia.org/wiki/Depth-first_search">Depth-first search</a>
|
||||
// over the tree resulting from the subdivisions we make.)
|
||||
toFlatten.Push(controlPoints.ToArray());
|
||||
|
||||
Vector2[] leftChild = subdivisionBuffer2;
|
||||
|
||||
while (toFlatten.Count > 0)
|
||||
{
|
||||
Vector2[] parent = toFlatten.Pop();
|
||||
if (isFlatEnough(parent))
|
||||
{
|
||||
// If the control points we currently operate on are sufficiently "flat", we use
|
||||
// an extension to De Casteljau's algorithm to obtain a piecewise-linear approximation
|
||||
// of the bezier curve represented by our control points, consisting of the same amount
|
||||
// of points as there are control points.
|
||||
approximate(parent, output);
|
||||
freeBuffers.Push(parent);
|
||||
continue;
|
||||
}
|
||||
|
||||
// If we do not yet have a sufficiently "flat" (in other words, detailed) approximation we keep
|
||||
// subdividing the curve we are currently operating on.
|
||||
Vector2[] rightChild = freeBuffers.Count > 0 ? freeBuffers.Pop() : new Vector2[count];
|
||||
subdivide(parent, leftChild, rightChild);
|
||||
|
||||
// We re-use the buffer of the parent for one of the children, so that we save one allocation per iteration.
|
||||
for (int i = 0; i < count; ++i)
|
||||
parent[i] = leftChild[i];
|
||||
|
||||
toFlatten.Push(rightChild);
|
||||
toFlatten.Push(parent);
|
||||
}
|
||||
|
||||
output.Add(controlPoints[count - 1]);
|
||||
return output;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
@ -92,60 +141,5 @@ namespace osu.Game.Rulesets.Objects
|
||||
output.Add(p);
|
||||
}
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Creates a piecewise-linear approximation of a bezier curve, by adaptively repeatedly subdividing
|
||||
/// the control points until their approximation error vanishes below a given threshold.
|
||||
/// </summary>
|
||||
/// <returns>A list of vectors representing the piecewise-linear approximation.</returns>
|
||||
public List<Vector2> CreateBezier()
|
||||
{
|
||||
List<Vector2> output = new List<Vector2>();
|
||||
|
||||
if (count == 0)
|
||||
return output;
|
||||
|
||||
Stack<Vector2[]> toFlatten = new Stack<Vector2[]>();
|
||||
Stack<Vector2[]> freeBuffers = new Stack<Vector2[]>();
|
||||
|
||||
// "toFlatten" contains all the curves which are not yet approximated well enough.
|
||||
// We use a stack to emulate recursion without the risk of running into a stack overflow.
|
||||
// (More specifically, we iteratively and adaptively refine our curve with a
|
||||
// <a href="https://en.wikipedia.org/wiki/Depth-first_search">Depth-first search</a>
|
||||
// over the tree resulting from the subdivisions we make.)
|
||||
toFlatten.Push(controlPoints.ToArray());
|
||||
|
||||
Vector2[] leftChild = subdivisionBuffer2;
|
||||
|
||||
while (toFlatten.Count > 0)
|
||||
{
|
||||
Vector2[] parent = toFlatten.Pop();
|
||||
if (isFlatEnough(parent))
|
||||
{
|
||||
// If the control points we currently operate on are sufficiently "flat", we use
|
||||
// an extension to De Casteljau's algorithm to obtain a piecewise-linear approximation
|
||||
// of the bezier curve represented by our control points, consisting of the same amount
|
||||
// of points as there are control points.
|
||||
approximate(parent, output);
|
||||
freeBuffers.Push(parent);
|
||||
continue;
|
||||
}
|
||||
|
||||
// If we do not yet have a sufficiently "flat" (in other words, detailed) approximation we keep
|
||||
// subdividing the curve we are currently operating on.
|
||||
Vector2[] rightChild = freeBuffers.Count > 0 ? freeBuffers.Pop() : new Vector2[count];
|
||||
subdivide(parent, leftChild, rightChild);
|
||||
|
||||
// We re-use the buffer of the parent for one of the children, so that we save one allocation per iteration.
|
||||
for (int i = 0; i < count; ++i)
|
||||
parent[i] = leftChild[i];
|
||||
|
||||
toFlatten.Push(rightChild);
|
||||
toFlatten.Push(parent);
|
||||
}
|
||||
|
||||
output.Add(controlPoints[count - 1]);
|
||||
return output;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -7,25 +7,18 @@ using OpenTK;
|
||||
|
||||
namespace osu.Game.Rulesets.Objects
|
||||
{
|
||||
public readonly ref struct CatmullApproximator
|
||||
public readonly struct CatmullApproximator : IApproximator
|
||||
{
|
||||
/// <summary>
|
||||
/// The amount of pieces to calculate for each controlpoint quadruplet.
|
||||
/// </summary>
|
||||
private const int detail = 50;
|
||||
|
||||
private readonly ReadOnlySpan<Vector2> controlPoints;
|
||||
|
||||
public CatmullApproximator(ReadOnlySpan<Vector2> controlPoints)
|
||||
{
|
||||
this.controlPoints = controlPoints;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Creates a piecewise-linear approximation of a Catmull-Rom spline.
|
||||
/// </summary>
|
||||
/// <returns>A list of vectors representing the piecewise-linear approximation.</returns>
|
||||
public List<Vector2> CreateCatmull()
|
||||
public List<Vector2> Approximate(ReadOnlySpan<Vector2> controlPoints)
|
||||
{
|
||||
var result = new List<Vector2>((controlPoints.Length - 1) * detail * 2);
|
||||
|
||||
|
@ -8,22 +8,15 @@ using OpenTK;
|
||||
|
||||
namespace osu.Game.Rulesets.Objects
|
||||
{
|
||||
public readonly ref struct CircularArcApproximator
|
||||
public readonly struct CircularArcApproximator : IApproximator
|
||||
{
|
||||
private const float tolerance = 0.1f;
|
||||
|
||||
private readonly ReadOnlySpan<Vector2> controlPoints;
|
||||
|
||||
public CircularArcApproximator(ReadOnlySpan<Vector2> controlPoints)
|
||||
{
|
||||
this.controlPoints = controlPoints;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Creates a piecewise-linear approximation of a circular arc curve.
|
||||
/// </summary>
|
||||
/// <returns>A list of vectors representing the piecewise-linear approximation.</returns>
|
||||
public List<Vector2> CreateArc()
|
||||
public List<Vector2> Approximate(ReadOnlySpan<Vector2> controlPoints)
|
||||
{
|
||||
Vector2 a = controlPoints[0];
|
||||
Vector2 b = controlPoints[1];
|
||||
|
19
osu.Game/Rulesets/Objects/IApproximator.cs
Normal file
19
osu.Game/Rulesets/Objects/IApproximator.cs
Normal file
@ -0,0 +1,19 @@
|
||||
// Copyright (c) 2007-2018 ppy Pty Ltd <contact@ppy.sh>.
|
||||
// Licensed under the MIT Licence - https://raw.githubusercontent.com/ppy/osu/master/LICENCE
|
||||
|
||||
using System;
|
||||
using System.Collections.Generic;
|
||||
using OpenTK;
|
||||
|
||||
namespace osu.Game.Rulesets.Objects
|
||||
{
|
||||
public interface IApproximator
|
||||
{
|
||||
/// <summary>
|
||||
/// Approximates a path by interpolating a sequence of control points.
|
||||
/// </summary>
|
||||
/// <param name="controlPoints">The control points of the path.</param>
|
||||
/// <returns>A set of points that lie on the path.</returns>
|
||||
List<Vector2> Approximate(ReadOnlySpan<Vector2> controlPoints);
|
||||
}
|
||||
}
|
@ -7,16 +7,9 @@ using OpenTK;
|
||||
|
||||
namespace osu.Game.Rulesets.Objects
|
||||
{
|
||||
public readonly ref struct LinearApproximator
|
||||
public readonly struct LinearApproximator : IApproximator
|
||||
{
|
||||
private readonly ReadOnlySpan<Vector2> controlPoints;
|
||||
|
||||
public LinearApproximator(ReadOnlySpan<Vector2> controlPoints)
|
||||
{
|
||||
this.controlPoints = controlPoints;
|
||||
}
|
||||
|
||||
public List<Vector2> CreateLinear()
|
||||
public List<Vector2> Approximate(ReadOnlySpan<Vector2> controlPoints)
|
||||
{
|
||||
var result = new List<Vector2>(controlPoints.Length);
|
||||
|
||||
|
@ -28,14 +28,14 @@ namespace osu.Game.Rulesets.Objects
|
||||
switch (PathType)
|
||||
{
|
||||
case PathType.Linear:
|
||||
return new LinearApproximator(subControlPoints).CreateLinear();
|
||||
return new LinearApproximator().Approximate(subControlPoints);
|
||||
case PathType.PerfectCurve:
|
||||
//we can only use CircularArc iff we have exactly three control points and no dissection.
|
||||
if (ControlPoints.Length != 3 || subControlPoints.Length != 3)
|
||||
break;
|
||||
|
||||
// Here we have exactly 3 control points. Attempt to fit a circular arc.
|
||||
List<Vector2> subpath = new CircularArcApproximator(subControlPoints).CreateArc();
|
||||
List<Vector2> subpath = new CircularArcApproximator().Approximate(subControlPoints);
|
||||
|
||||
// If for some reason a circular arc could not be fit to the 3 given points, fall back to a numerically stable bezier approximation.
|
||||
if (subpath.Count == 0)
|
||||
@ -43,10 +43,10 @@ namespace osu.Game.Rulesets.Objects
|
||||
|
||||
return subpath;
|
||||
case PathType.Catmull:
|
||||
return new CatmullApproximator(subControlPoints).CreateCatmull();
|
||||
return new CatmullApproximator().Approximate(subControlPoints);
|
||||
}
|
||||
|
||||
return new BezierApproximator(subControlPoints).CreateBezier();
|
||||
return new BezierApproximator().Approximate(subControlPoints);
|
||||
}
|
||||
|
||||
private void calculatePath()
|
||||
|
Loading…
Reference in New Issue
Block a user