1
0
mirror of https://github.com/ppy/osu.git synced 2024-12-26 00:02:56 +08:00
osu-lazer/osu.Game.Rulesets.Catch/Objects/JuiceStreamPath.cs

341 lines
15 KiB
C#
Raw Normal View History

// Copyright (c) ppy Pty Ltd <contact@ppy.sh>. Licensed under the MIT Licence.
// See the LICENCE file in the repository root for full licence text.
using System;
using System.Collections.Generic;
using System.Linq;
using osu.Framework.Utils;
using osu.Game.Rulesets.Objects;
using osu.Game.Rulesets.Objects.Types;
using osuTK;
#nullable enable
namespace osu.Game.Rulesets.Catch.Objects
{
/// <summary>
/// Represents the path of a juice stream.
/// <para>
/// A <see cref="JuiceStream"/> holds a legacy <see cref="SliderPath"/> as the representation of the path.
/// However, the <see cref="SliderPath"/> representation is difficult to work with.
/// This <see cref="JuiceStreamPath"/> represents the path in a more convenient way, a polyline connecting list of <see cref="JuiceStreamPathVertex"/>s.
/// </para>
/// <para>
/// The path can be regarded as a function from the closed interval <c>[Vertices[0].Distance, Vertices[^1].Distance]</c> to the x position, given by <see cref="PositionAtDistance"/>.
/// To ensure the path is convertible to a <see cref="SliderPath"/>, the slope of the function must not be more than <c>1</c> everywhere,
/// and this slope condition is always maintained as an invariant.
/// </para>
/// </summary>
public class JuiceStreamPath
{
/// <summary>
/// The height of legacy osu!standard playfield.
/// The sliders converted by <see cref="ConvertToSliderPath"/> are vertically contained in this height.
/// </summary>
internal const float OSU_PLAYFIELD_HEIGHT = 384;
/// <summary>
/// The list of vertices of the path, which is represented as a polyline connecting the vertices.
/// </summary>
public IReadOnlyList<JuiceStreamPathVertex> Vertices => vertices;
/// <summary>
/// The current version number.
/// This starts from <c>1</c> and incremented whenever this <see cref="JuiceStreamPath"/> is modified.
/// </summary>
public int InvalidationID { get; private set; } = 1;
/// <summary>
/// The difference between first vertex's <see cref="JuiceStreamPathVertex.Distance"/> and last vertex's <see cref="JuiceStreamPathVertex.Distance"/>.
/// </summary>
public double Distance => vertices[^1].Distance - vertices[0].Distance;
/// <remarks>
/// This list should always be non-empty.
/// </remarks>
private readonly List<JuiceStreamPathVertex> vertices = new List<JuiceStreamPathVertex>
{
new JuiceStreamPathVertex()
};
/// <summary>
/// Compute the x-position of the path at the given <paramref name="distance"/>.
/// </summary>
/// <remarks>
/// When the given distance is outside of the path, the x position at the corresponding endpoint is returned,
/// </remarks>
public float PositionAtDistance(double distance)
{
int index = vertexIndexAtDistance(distance);
return positionAtDistance(distance, index);
}
/// <summary>
/// Remove all vertices of this path, then add a new vertex <c>(0, 0)</c>.
/// </summary>
public void Clear()
{
vertices.Clear();
vertices.Add(new JuiceStreamPathVertex());
invalidate();
}
/// <summary>
/// Insert a vertex at given <paramref name="distance"/>.
/// The <see cref="PositionAtDistance"/> is used as the position of the new vertex.
/// Thus, the set of points of the path is not changed (up to floating-point precision).
/// </summary>
/// <returns>The index of the new vertex.</returns>
public int InsertVertex(double distance)
{
if (!double.IsFinite(distance))
throw new ArgumentOutOfRangeException(nameof(distance));
int index = vertexIndexAtDistance(distance);
float x = positionAtDistance(distance, index);
vertices.Insert(index, new JuiceStreamPathVertex(distance, x));
invalidate();
return index;
}
/// <summary>
/// Move the vertex of given <paramref name="index"/> to the given position <paramref name="newX"/>.
/// When the distances between vertices are too small for the new vertex positions, the adjacent vertices are moved towards <paramref name="newX"/>.
/// </summary>
public void SetVertexPosition(int index, float newX)
{
if (index < 0 || index >= vertices.Count)
throw new ArgumentOutOfRangeException(nameof(index));
if (!float.IsFinite(newX))
throw new ArgumentOutOfRangeException(nameof(newX));
var newVertex = new JuiceStreamPathVertex(vertices[index].Distance, newX);
for (int i = index - 1; i >= 0 && !canConnect(vertices[i], newVertex); i--)
{
float clampedX = clampToConnectablePosition(newVertex, vertices[i]);
vertices[i] = new JuiceStreamPathVertex(vertices[i].Distance, clampedX);
}
for (int i = index + 1; i < vertices.Count; i++)
{
float clampedX = clampToConnectablePosition(newVertex, vertices[i]);
vertices[i] = new JuiceStreamPathVertex(vertices[i].Distance, clampedX);
}
vertices[index] = newVertex;
invalidate();
}
/// <summary>
/// Add a new vertex at given <paramref name="distance"/> and position.
/// Adjacent vertices are moved when necessary in the same way as <see cref="SetVertexPosition"/>.
/// </summary>
public void Add(double distance, float x)
{
int index = InsertVertex(distance);
SetVertexPosition(index, x);
}
/// <summary>
/// Remove all vertices that satisfy the given <paramref name="predicate"/>.
/// </summary>
/// <remarks>
/// If all vertices are removed, a new vertex <c>(0, 0)</c> is added.
/// </remarks>
/// <param name="predicate">The predicate to determine whether a vertex should be removed given the vertex and its index in the path.</param>
/// <returns>The number of removed vertices.</returns>
public int RemoveVertices(Func<JuiceStreamPathVertex, int, bool> predicate)
{
int index = 0;
int removeCount = vertices.RemoveAll(vertex => predicate(vertex, index++));
if (vertices.Count == 0)
vertices.Add(new JuiceStreamPathVertex());
if (removeCount != 0)
invalidate();
return removeCount;
}
/// <summary>
/// Recreate this path by using difference set of vertices at given distances.
/// In addition to the given <paramref name="sampleDistances"/>, the first vertex and the last vertex are always added to the new path.
/// New vertices use the positions on the original path. Thus, <see cref="PositionAtDistance"/>s at <paramref name="sampleDistances"/> are preserved.
/// </summary>
public void ResampleVertices(IEnumerable<double> sampleDistances)
{
var sampledVertices = new List<JuiceStreamPathVertex>();
foreach (double distance in sampleDistances)
{
if (!double.IsFinite(distance))
throw new ArgumentOutOfRangeException(nameof(sampleDistances));
double clampedDistance = Math.Clamp(distance, vertices[0].Distance, vertices[^1].Distance);
float x = PositionAtDistance(clampedDistance);
sampledVertices.Add(new JuiceStreamPathVertex(clampedDistance, x));
}
sampledVertices.Sort();
// The first vertex and the last vertex are always used in the result.
vertices.RemoveRange(1, vertices.Count - (vertices.Count == 1 ? 1 : 2));
vertices.InsertRange(1, sampledVertices);
invalidate();
}
/// <summary>
/// Convert a <see cref="SliderPath"/> to list of vertices and write the result to this <see cref="JuiceStreamPath"/>.
/// </summary>
/// <remarks>
/// Duplicated vertices are automatically removed.
/// </remarks>
public void ConvertFromSliderPath(SliderPath sliderPath)
{
var sliderPathVertices = new List<Vector2>();
sliderPath.GetPathToProgress(sliderPathVertices, 0, 1);
double distance = 0;
vertices.Clear();
vertices.Add(new JuiceStreamPathVertex(0, sliderPathVertices.FirstOrDefault().X));
for (int i = 1; i < sliderPathVertices.Count; i++)
{
distance += Vector2.Distance(sliderPathVertices[i - 1], sliderPathVertices[i]);
if (!Precision.AlmostEquals(vertices[^1].Distance, distance))
vertices.Add(new JuiceStreamPathVertex(distance, sliderPathVertices[i].X));
}
invalidate();
}
/// <summary>
/// Convert the path of this <see cref="JuiceStreamPath"/> to a <see cref="SliderPath"/> and write the result to <paramref name="sliderPath"/>.
/// The resulting slider is "folded" to make it vertically contained in the playfield `(0..<see cref="OSU_PLAYFIELD_HEIGHT"/>)` assuming the slider start position is <paramref name="sliderStartY"/>.
/// </summary>
public void ConvertToSliderPath(SliderPath sliderPath, float sliderStartY)
{
const float margin = 1;
// Note: these two variables and `sliderPath` are modified by the local functions.
double currentDistance = 0;
Vector2 lastPosition = new Vector2(vertices[0].X, 0);
sliderPath.ControlPoints.Clear();
sliderPath.ControlPoints.Add(new PathControlPoint(lastPosition));
for (int i = 1; i < vertices.Count; i++)
{
sliderPath.ControlPoints[^1].Type = PathType.Linear;
float deltaX = vertices[i].X - lastPosition.X;
double length = vertices[i].Distance - currentDistance;
// Should satisfy `deltaX^2 + deltaY^2 = length^2`.
// By invariants, the expression inside the `sqrt` is (almost) non-negative.
double deltaY = Math.Sqrt(Math.Max(0, length * length - (double)deltaX * deltaX));
// When `deltaY` is small, one segment is always enough.
// This case is handled separately to prevent divide-by-zero.
if (deltaY <= OSU_PLAYFIELD_HEIGHT / 2 - margin)
{
float nextX = vertices[i].X;
float nextY = (float)(lastPosition.Y + getYDirection() * deltaY);
addControlPoint(nextX, nextY);
continue;
}
// When `deltaY` is large or when the slider velocity is fast, the segment must be partitioned to subsegments to stay in bounds.
for (double currentProgress = 0; currentProgress < deltaY;)
{
double nextProgress = Math.Min(currentProgress + getMaxDeltaY(), deltaY);
float nextX = (float)(vertices[i - 1].X + nextProgress / deltaY * deltaX);
float nextY = (float)(lastPosition.Y + getYDirection() * (nextProgress - currentProgress));
addControlPoint(nextX, nextY);
currentProgress = nextProgress;
}
}
int getYDirection()
{
float lastSliderY = sliderStartY + lastPosition.Y;
return lastSliderY < OSU_PLAYFIELD_HEIGHT / 2 ? 1 : -1;
}
float getMaxDeltaY()
{
float lastSliderY = sliderStartY + lastPosition.Y;
return Math.Max(lastSliderY, OSU_PLAYFIELD_HEIGHT - lastSliderY) - margin;
}
void addControlPoint(float nextX, float nextY)
{
Vector2 nextPosition = new Vector2(nextX, nextY);
sliderPath.ControlPoints.Add(new PathControlPoint(nextPosition));
currentDistance += Vector2.Distance(lastPosition, nextPosition);
lastPosition = nextPosition;
}
}
/// <summary>
/// Find the index at which a new vertex with <paramref name="distance"/> can be inserted.
/// </summary>
private int vertexIndexAtDistance(double distance)
{
// The position of `(distance, Infinity)` is uniquely determined because infinite positions are not allowed.
int i = vertices.BinarySearch(new JuiceStreamPathVertex(distance, float.PositiveInfinity));
return i < 0 ? ~i : i;
}
/// <summary>
/// Compute the position at the given <paramref name="distance"/>, assuming <paramref name="index"/> is the vertex index returned by <see cref="vertexIndexAtDistance"/>.
/// </summary>
private float positionAtDistance(double distance, int index)
{
if (index <= 0)
return vertices[0].X;
if (index >= vertices.Count)
return vertices[^1].X;
double length = vertices[index].Distance - vertices[index - 1].Distance;
if (Precision.AlmostEquals(length, 0))
return vertices[index].X;
float deltaX = vertices[index].X - vertices[index - 1].X;
return (float)(vertices[index - 1].X + deltaX * ((distance - vertices[index - 1].Distance) / length));
}
/// <summary>
/// Check the two vertices can connected directly while satisfying the slope condition.
/// </summary>
private bool canConnect(JuiceStreamPathVertex vertex1, JuiceStreamPathVertex vertex2, float allowance = 0)
{
double xDistance = Math.Abs((double)vertex2.X - vertex1.X);
float length = (float)Math.Abs(vertex2.Distance - vertex1.Distance);
return xDistance <= length + allowance;
}
/// <summary>
/// Move the position of <paramref name="movableVertex"/> towards the position of <paramref name="fixedVertex"/>
/// until the vertex pair satisfies the condition <see cref="canConnect"/>.
/// </summary>
/// <returns>The resulting position of <paramref name="movableVertex"/>.</returns>
private float clampToConnectablePosition(JuiceStreamPathVertex fixedVertex, JuiceStreamPathVertex movableVertex)
{
float length = (float)Math.Abs(movableVertex.Distance - fixedVertex.Distance);
return Math.Clamp(movableVertex.X, fixedVertex.X - length, fixedVertex.X + length);
}
private void invalidate() => InvalidationID++;
}
}