1
0
mirror of https://github.com/ppy/osu.git synced 2024-12-27 13:02:56 +08:00
osu-lazer/osu.Game.Rulesets.Osu/OsuDifficulty/Preprocessing/OsuDifficultyBeatmap.cs

94 lines
4.9 KiB
C#
Raw Normal View History

// Copyright (c) 2007-2017 ppy Pty Ltd <contact@ppy.sh>.
// Licensed under the MIT Licence - https://raw.githubusercontent.com/ppy/osu/master/LICENCE
using System.Collections;
using System.Collections.Generic;
using osu.Game.Rulesets.Osu.Objects;
namespace osu.Game.Rulesets.Osu.OsuDifficulty.Preprocessing
{
2017-06-07 00:59:46 +08:00
/// <summary>
/// An enumerable container wrapping <see cref="OsuHitObject"/> input as <see cref="OsuDifficultyHitObject"/>
/// which contains extra data required for difficulty calculation.
/// </summary>
2017-06-06 06:07:00 +08:00
public class OsuDifficultyBeatmap : IEnumerable<OsuDifficultyHitObject>
{
private readonly IEnumerator<OsuDifficultyHitObject> difficultyObjects;
private readonly Queue<OsuDifficultyHitObject> onScreen = new Queue<OsuDifficultyHitObject>();
/// <summary>
2017-06-07 00:59:46 +08:00
/// Creates an enumerator, which preprocesses a list of <see cref="OsuHitObject"/>s recieved as input, wrapping them as
/// <see cref="OsuDifficultyHitObject"/> which contains extra data required for difficulty calculation.
/// </summary>
2017-06-06 06:07:00 +08:00
public OsuDifficultyBeatmap(List<OsuHitObject> objects)
{
2017-06-07 00:59:46 +08:00
// Sort OsuHitObjects by StartTime - they are not correctly ordered in some cases.
// This should probably happen before the objects reach the difficulty calculator.
objects.Sort((a, b) => a.StartTime.CompareTo(b.StartTime));
difficultyObjects = createDifficultyObjectEnumerator(objects);
}
/// <summary>
2017-06-07 00:59:46 +08:00
/// Returns an enumerator that enumerates all <see cref="OsuDifficultyHitObject"/>s in the <see cref="OsuDifficultyBeatmap"/>.
/// The inner loop adds objects that appear on screen into a queue until we need to hit the next object.
/// The outer loop returns objects from this queue one at a time, only after they had to be hit, and should no longer be on screen.
/// This means that we can loop through every object that is on screen at the time when a new one appears,
2017-06-07 00:59:46 +08:00
/// allowing us to determine a reading strain for the object that just appeared.
/// </summary>
public IEnumerator<OsuDifficultyHitObject> GetEnumerator()
{
while (true)
{
2017-06-07 00:59:46 +08:00
// Add upcoming objects to the queue until we have at least one object that had been hit and can be dequeued.
// This means there is always at least one object in the queue unless we reached the end of the map.
do
{
if (!difficultyObjects.MoveNext())
2017-06-07 00:59:46 +08:00
break; // New objects can't be added anymore, but we still need to dequeue and return the ones already on screen.
OsuDifficultyHitObject latest = difficultyObjects.Current;
// Calculate flow values here
foreach (OsuDifficultyHitObject h in onScreen)
{
h.TimeUntilHit -= latest.DeltaTime;
// Calculate reading strain here
}
onScreen.Enqueue(latest);
}
2017-06-07 00:59:46 +08:00
while (onScreen.Peek().TimeUntilHit > 0); // Keep adding new objects on screen while there is still time before we have to hit the next one.
2017-06-07 00:59:46 +08:00
if (onScreen.Count == 0) break; // We have reached the end of the map and enumerated all the objects.
yield return onScreen.Dequeue(); // Remove and return objects one by one that had to be hit before the latest one appeared.
}
}
IEnumerator IEnumerable.GetEnumerator() => GetEnumerator();
private IEnumerator<OsuDifficultyHitObject> createDifficultyObjectEnumerator(List<OsuHitObject> objects)
{
2017-06-07 00:59:46 +08:00
// We will process OsuHitObjects in groups of three to form a triangle, so we can calculate an angle for each object.
OsuHitObject[] triangle = new OsuHitObject[3];
2017-06-07 00:59:46 +08:00
// OsuDifficultyHitObject construction requires three components, an extra copy of the first OsuHitObject is used at the beginning.
if (objects.Count > 1)
{
triangle[1] = objects[0]; // This copy will get shifted to the last spot in the triangle.
2017-06-07 00:59:46 +08:00
triangle[0] = objects[0]; // This component corresponds to the real first OsuHitOject.
}
2017-06-07 00:59:46 +08:00
// The final component of the first triangle will be the second OsuHitOject of the map, which forms the first jump.
// If the map has less than two OsuHitObjects, the enumerator will not return anything.
for (int i = 1; i < objects.Count; ++i)
{
triangle[2] = triangle[1];
triangle[1] = triangle[0];
triangle[0] = objects[i];
yield return new OsuDifficultyHitObject(triangle);
}
}
}
}