CodeWalker/CodeWalker.Shaders/LightPS.hlsli
2019-12-12 22:21:18 +11:00

222 lines
6.5 KiB
HLSL

#include "Shadowmap.hlsli"
struct PS_OUTPUT
{
float4 Colour : SV_TARGET;
float Depth : SV_DEPTH;
};
cbuffer PSLightVars : register(b0)
{
ShaderGlobalLightParams GlobalLights;
float4x4 ViewProjInv;
float4 CameraPos;
uint EnableShadows;
uint RenderMode; //0=default, 1=normals, 2=tangents, 3=colours, 4=texcoords, 5=diffuse, 6=normalmap, 7=spec, 8=direct
uint RenderModeIndex;
uint RenderSamplerCoord;
uint LightType; //0=directional, 1=Point, 2=Spot, 4=Capsule
uint IsLOD; //useful or not?
uint SampleCount;//for MSAA
float SampleMult;//for MSAA
}
cbuffer PSLightInstVars : register(b2)
{
float3 InstPosition;//camera relative
float InstIntensity;
float3 InstColour;
float InstFalloff;
float3 InstDirection;
float InstFalloffExponent;
float3 InstTangentX;
float InstConeInnerAngle;
float3 InstTangentY;
float InstConeOuterAngle;
float3 InstCapsuleExtent;
uint InstType;
float3 InstCullingPlaneNormal;
float InstCullingPlaneOffset;
}
struct LODLight
{
float3 Position;
uint Colour;
float3 Direction;
uint TimeAndStateFlags;
float4 TangentX;
float4 TangentY;
float Falloff;
float FalloffExponent;
float InnerAngle; //for cone
float OuterAngleOrCapExt; //outer angle for cone, cap extent for capsule
};
StructuredBuffer<LODLight> LODLights : register(t6);
float3 GetReflectedDir(float3 camRel, float3 norm)
{
float3 incident = normalize(camRel);
float3 refl = normalize(reflect(incident, norm));
return refl;
}
float4 GetLineSegmentNearestPoint(float3 v, float3 a, float3 b)
{
float3 ab = b - a;
float3 av = v - a;
if (dot(av, ab) <= 0.0f)// Point is lagging behind start of the segment, so perpendicular distance is not viable.
{
return float4(av, length(av));
}
else
{
float3 bv = v - b;
if (dot(bv, ab) >= 0.0f)// Point is advanced past the end of the segment, so perpendicular distance is not viable.
{
return float4(bv, length(bv));
}
else
{
float3 abv = cross(ab, av);
float d = length(abv) / length(ab);
return float4(normalize(cross(abv, ab)) * d, d); //improve this!
}
}
}
float3 DeferredDirectionalLight(float3 camRel, float3 norm, float4 diffuse, float4 specular, float4 irradiance)
{
float3 refl = GetReflectedDir(camRel, norm);
float specb = saturate(dot(refl, GlobalLights.LightDir));
float specp = max(exp(specb * 10) - 1, 0);
float3 spec = GlobalLights.LightDirColour.rgb * 0.00006 * specp * specular.r;
float4 lightspacepos;
float shadowdepth = ShadowmapSceneDepth(camRel, lightspacepos);
float3 c = FullLighting(diffuse.rgb, spec, norm, irradiance, GlobalLights, EnableShadows, shadowdepth, lightspacepos);
c += diffuse.rgb * irradiance.b; //emissive multiplier
return c;
}
float4 DeferredLODLight(float3 camRel, float3 norm, float4 diffuse, float4 specular, float4 irradiance, uint iid)
{
LODLight lodlight = LODLights[iid];
float3 srpos = lodlight.Position - (camRel + CameraPos.xyz); //light position relative to surface position
float ldist = length(srpos);
if (LightType == 4)//capsule
{
float3 ext = lodlight.Direction.xyz * lodlight.OuterAngleOrCapExt;
float4 lsn = GetLineSegmentNearestPoint(srpos, ext, -ext);
ldist = lsn.w;
srpos.xyz = lsn.xyz;
}
if (ldist > lodlight.Falloff) return 0; //out of range of the light...
if (ldist <= 0) return 0;
float4 rgbi = Unpack4x8UNF(lodlight.Colour).gbar;
float3 lcol = rgbi.rgb * rgbi.a * 5.0f;
float3 ldir = srpos / ldist;
float pclit = saturate(dot(ldir, norm));
float lamt = 1;
if (LightType == 1)//point (sphere)
{
lamt *= pow(saturate(1 - (ldist / lodlight.Falloff)), lodlight.FalloffExponent);
}
else if (LightType == 2)//spot (cone)
{
float ang = acos(-dot(ldir, lodlight.Direction));
float iang = lodlight.InnerAngle;
float oang = lodlight.OuterAngleOrCapExt;
if (ang > oang) return 0;
lamt *= saturate(1 - ((ang - iang) / (oang - iang)));
lamt *= pow(saturate(1 - (ldist / lodlight.Falloff)), lodlight.FalloffExponent);
}
else if (LightType == 4)//capsule
{
lamt *= pow(saturate(1 - (ldist / lodlight.Falloff)), lodlight.FalloffExponent); //TODO! proper capsule lighting... (use point-line dist!)
}
pclit *= lamt;
if (pclit <= 0) return 0;
float3 refl = GetReflectedDir(camRel, norm);
float specb = saturate(dot(refl, ldir));
float specp = max(exp(specb * 10) - 1, 0);
float3 spec = lcol * (0.00006 * specp * specular.r * lamt);
lcol = lcol * diffuse.rgb * pclit + spec;
return float4(lcol, 1);
}
float4 DeferredLight(float3 camRel, float3 norm, float4 diffuse, float4 specular, float4 irradiance)
{
float3 srpos = InstPosition - camRel; //light position relative to surface position
float ldist = length(srpos);
if (InstType == 4)//capsule
{
float3 ext = InstDirection.xyz * (InstCapsuleExtent.y * 0.5);
float4 lsn = GetLineSegmentNearestPoint(srpos, ext, -ext);
ldist = lsn.w;
srpos.xyz = lsn.xyz;
}
if (ldist > InstFalloff) return 0;
if (ldist <= 0) return 0;
float d = dot(srpos, InstCullingPlaneNormal) - InstCullingPlaneOffset;
if (d > 0) return 0;
float4 rgbi = float4(InstColour, InstIntensity);
float3 lcol = rgbi.rgb;// * rgbi.a; // * 5.0f;
float3 ldir = srpos / ldist;
float pclit = saturate(dot(ldir, norm));
float lamt = 1;
if (InstType == 1)//point (sphere)
{
lamt *= pow(saturate(1 - (ldist / InstFalloff)), InstFalloffExponent);
}
else if (InstType == 2)//spot (cone)
{
float ang = acos(-dot(ldir, InstDirection));
float iang = InstConeInnerAngle;
float oang = InstConeOuterAngle;
if (ang > oang) return 0;
lamt *= saturate(1 - ((ang - iang) / (oang - iang)));
lamt *= pow(saturate(1 - (ldist / InstFalloff)), InstFalloffExponent);
}
else if (InstType == 4)//capsule
{
lamt *= pow(saturate(1 - (ldist / InstFalloff)), InstFalloffExponent);
}
pclit *= lamt;
if (pclit <= 0) return 0;
float3 refl = GetReflectedDir(camRel, norm);
float specb = saturate(dot(refl, ldir));
float specp = max(exp(specb * 10) - 1, 0);
float3 spec = lcol * (0.00006 * specp * specular.r * lamt);
lcol = lcol * diffuse.rgb * pclit + spec;
return float4(lcol, 1);
}