1
0
mirror of https://github.com/rofl0r/proxychains-ng synced 2025-01-11 00:03:12 +08:00
proxychains-ng/src/core.c
2012-07-08 21:23:39 +02:00

895 lines
22 KiB
C

/***************************************************************************
core.c - description
-------------------
begin : Tue May 14 2002
copyright : netcreature (C) 2002
email : netcreature@users.sourceforge.net
***************************************************************************
* GPL *
***************************************************************************
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
***************************************************************************/
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <netdb.h>
#include <sys/utsname.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/poll.h>
#include <sys/wait.h>
#include <fcntl.h>
#include <time.h>
#include <sys/time.h>
#include <stdarg.h>
#ifdef THREAD_SAFE
#include <pthread.h>
pthread_mutex_t internal_ips_lock;
#endif
#include "core.h"
#include "common.h"
extern int tcp_read_time_out;
extern int tcp_connect_time_out;
extern int proxychains_quiet_mode;
extern unsigned int remote_dns_subnet;
internal_ip_lookup_table internal_ips = { 0, 0, NULL };
uint32_t dalias_hash(char *s0) {
unsigned char *s = (void *) s0;
uint_fast32_t h = 0;
while(*s) {
h = 16 * h + *s++;
h ^= h >> 24 & 0xf0;
}
return h & 0xfffffff;
}
uint32_t index_from_internal_ip(ip_type internalip) {
ip_type tmp = internalip;
uint32_t ret;
ret = tmp.octet[3] + (tmp.octet[2] << 8) + (tmp.octet[1] << 16);
ret -= 1;
return ret;
}
char *string_from_internal_ip(ip_type internalip) {
char *res = NULL;
uint32_t index = index_from_internal_ip(internalip);
MUTEX_LOCK(&internal_ips_lock);
if(index < internal_ips.counter)
res = internal_ips.list[index]->string;
MUTEX_UNLOCK(&internal_ips_lock);
return res;
}
in_addr_t make_internal_ip(uint32_t index) {
ip_type ret;
index++; // so we can start at .0.0.1
if(index > 0xFFFFFF)
return (in_addr_t) - 1;
ret.octet[0] = remote_dns_subnet & 0xFF;
ret.octet[1] = (index & 0xFF0000) >> 16;
ret.octet[2] = (index & 0xFF00) >> 8;
ret.octet[3] = index & 0xFF;
return (in_addr_t) ret.as_int;
}
// stolen from libulz (C) rofl0r
void pc_stringfromipv4(unsigned char *ip_buf_4_bytes, char *outbuf_16_bytes) {
unsigned char *p;
char *o = outbuf_16_bytes;
unsigned char n;
for(p = ip_buf_4_bytes; p < ip_buf_4_bytes + 4; p++) {
n = *p;
if(*p >= 100) {
if(*p >= 200)
*(o++) = '2';
else
*(o++) = '1';
n %= 100;
}
if(*p >= 10) {
*(o++) = (n / 10) + '0';
n %= 10;
}
*(o++) = n + '0';
*(o++) = '.';
}
o[-1] = 0;
}
static const char base64[] = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
static int poll_retry(struct pollfd *fds, nfds_t nfsd, int timeout) {
int ret;
int time_remain = timeout;
int time_elapsed = 0;
struct timeval start_time;
struct timeval tv;
gettimeofday(&start_time, NULL);
do {
//printf("Retry %d\n", time_remain);
ret = poll(fds, nfsd, time_remain);
gettimeofday(&tv, NULL);
time_elapsed = ((tv.tv_sec - start_time.tv_sec) * 1000 + (tv.tv_usec - start_time.tv_usec) / 1000);
//printf("Time elapsed %d\n", time_elapsed);
time_remain = timeout - time_elapsed;
} while(ret == -1 && errno == EINTR && time_remain > 0);
//if (ret == -1)
//printf("Return %d %d %s\n", ret, errno, strerror(errno));
return ret;
}
static void encode_base_64(char *src, char *dest, int max_len) {
int n, l, i;
l = strlen(src);
max_len = (max_len - 1) / 4;
for(i = 0; i < max_len; i++, src += 3, l -= 3) {
switch (l) {
case 0:
break;
case 1:
n = src[0] << 16;
*dest++ = base64[(n >> 18) & 077];
*dest++ = base64[(n >> 12) & 077];
*dest++ = '=';
*dest++ = '=';
break;
case 2:
n = src[0] << 16 | src[1] << 8;
*dest++ = base64[(n >> 18) & 077];
*dest++ = base64[(n >> 12) & 077];
*dest++ = base64[(n >> 6) & 077];
*dest++ = '=';
break;
default:
n = src[0] << 16 | src[1] << 8 | src[2];
*dest++ = base64[(n >> 18) & 077];
*dest++ = base64[(n >> 12) & 077];
*dest++ = base64[(n >> 6) & 077];
*dest++ = base64[n & 077];
}
if(l < 3)
break;
}
*dest++ = 0;
}
#define LOG_BUFF 1024*20
int proxychains_write_log(char *str, ...) {
char buff[LOG_BUFF];
va_list arglist;
FILE *log_file;
log_file = stderr;
if(!proxychains_quiet_mode) {
va_start(arglist, str);
vsprintf(buff, str, arglist);
va_end(arglist);
fprintf(log_file, "%s", buff);
fflush(log_file);
}
return EXIT_SUCCESS;
}
static int write_n_bytes(int fd, char *buff, size_t size) {
int i = 0;
size_t wrote = 0;
for(;;) {
i = write(fd, &buff[wrote], size - wrote);
if(i <= 0)
return i;
wrote += i;
if(wrote == size)
return wrote;
}
}
static int read_n_bytes(int fd, char *buff, size_t size) {
int ready;
size_t i;
struct pollfd pfd[1];
pfd[0].fd = fd;
pfd[0].events = POLLIN;
for(i = 0; i < size; i++) {
pfd[0].revents = 0;
ready = poll_retry(pfd, 1, tcp_read_time_out);
if(ready != 1 || !(pfd[0].revents & POLLIN) || 1 != read(fd, &buff[i], 1))
return -1;
}
return (int) size;
}
static int timed_connect(int sock, const struct sockaddr *addr, socklen_t len) {
int ret, value;
socklen_t value_len;
struct pollfd pfd[1];
pfd[0].fd = sock;
pfd[0].events = POLLOUT;
fcntl(sock, F_SETFL, O_NONBLOCK);
ret = true_connect(sock, addr, len);
PDEBUG("\nconnect ret=%d\n", ret);
if(ret == -1 && errno == EINPROGRESS) {
ret = poll_retry(pfd, 1, tcp_connect_time_out);
PDEBUG("\npoll ret=%d\n", ret);
if(ret == 1) {
value_len = sizeof(socklen_t);
getsockopt(sock, SOL_SOCKET, SO_ERROR, &value, &value_len);
PDEBUG("\nvalue=%d\n", value);
if(!value)
ret = 0;
else
ret = -1;
} else {
ret = -1;
}
} else {
#ifdef DEBUG
if(ret == -1)
perror("true_connect");
#endif
if(ret != 0)
ret = -1;
}
fcntl(sock, F_SETFL, !O_NONBLOCK);
return ret;
}
#define INVALID_INDEX 0xFFFFFFFFU
static int tunnel_to(int sock, ip_type ip, unsigned short port, proxy_type pt, char *user, char *pass) {
char *dns_name = NULL;
size_t dns_len = 0;
PDEBUG("tunnel_to()\n");
// we use ip addresses with 224.* to lookup their dns name in our table, to allow remote DNS resolution
// the range 224-255.* is reserved, and it won't go outside (unless the app does some other stuff with
// the results returned from gethostbyname et al.)
// the hardcoded number 224 can now be changed using the config option remote_dns_subnet to i.e. 127
if(ip.octet[0] == remote_dns_subnet) {
dns_name = string_from_internal_ip(ip);
if(!dns_name)
goto err;
dns_len = strlen(dns_name);
if(!dns_len)
goto err;
}
PDEBUG("host dns %s\n", dns_name ? dns_name : "<NULL>");
size_t ulen = strlen(user);
size_t passlen = strlen(pass);
if(ulen > 0xFF || passlen > 0xFF || dns_len > 0xFF) {
proxychains_write_log(LOG_PREFIX "error: maximum size of 255 for user/pass or domain name!\n");
goto err;
}
int len;
unsigned char buff[BUFF_SIZE];
char ip_buf[16];
//memset (buff, 0, sizeof(buff));
switch (pt) {
case HTTP_TYPE:{
if(!dns_len) {
pc_stringfromipv4(&ip.octet[0], ip_buf);
dns_name = ip_buf;
}
snprintf((char *) buff, sizeof(buff), "CONNECT %s:%d HTTP/1.0\r\n", dns_name,
ntohs(port));
if(user[0]) {
#define HTTP_AUTH_MAX ((0xFF * 2) + 1 + 1)
// 2 * 0xff: username and pass, plus 1 for ':' and 1 for zero terminator.
char src[HTTP_AUTH_MAX];
char dst[(4 * HTTP_AUTH_MAX)];
memcpy(src, user, ulen);
memcpy(src + ulen, ":", 1);
memcpy(src + ulen + 1, pass, passlen);
src[ulen + 1 + passlen] = 0;
encode_base_64(src, dst, sizeof(dst));
strcat((char *) buff, "Proxy-Authorization: Basic ");
strcat((char *) buff, dst);
strcat((char *) buff, "\r\n\r\n");
} else
strcat((char *) buff, "\r\n");
len = strlen((char *) buff);
if(len != send(sock, buff, len, 0))
goto err;
len = 0;
// read header byte by byte.
while(len < BUFF_SIZE) {
if(1 == read_n_bytes(sock, (char *) (buff + len), 1))
len++;
else
goto err;
if(len > 4 &&
buff[len - 1] == '\n' &&
buff[len - 2] == '\r' && buff[len - 3] == '\n' && buff[len - 4] == '\r')
break;
}
// if not ok (200) or response greather than BUFF_SIZE return BLOCKED;
if(len == BUFF_SIZE || !(buff[9] == '2' && buff[10] == '0' && buff[11] == '0'))
return BLOCKED;
return SUCCESS;
}
break;
case SOCKS4_TYPE:{
buff[0] = 4; // socks version
buff[1] = 1; // connect command
memcpy(&buff[2], &port, 2); // dest port
if(dns_len) {
ip.octet[0] = 0;
ip.octet[1] = 0;
ip.octet[2] = 0;
ip.octet[3] = 1;
}
memcpy(&buff[4], &ip, 4); // dest host
len = ulen + 1; // username
if(len > 1)
memcpy(&buff[8], user, len);
else {
buff[8] = 0;
}
// do socksv4a dns resolution on the server
if(dns_len) {
memcpy(&buff[8 + len], dns_name, dns_len + 1);
len += dns_len + 1;
}
if((len + 8) != write_n_bytes(sock, (char *) buff, (8 + len)))
goto err;
if(8 != read_n_bytes(sock, (char *) buff, 8))
goto err;
if(buff[0] != 0 || buff[1] != 90)
return BLOCKED;
return SUCCESS;
}
break;
case SOCKS5_TYPE:{
if(user) {
buff[0] = 5; //version
buff[1] = 2; //nomber of methods
buff[2] = 0; // no auth method
buff[3] = 2; /// auth method -> username / password
if(4 != write_n_bytes(sock, (char *) buff, 4))
goto err;
} else {
buff[0] = 5; //version
buff[1] = 1; //nomber of methods
buff[2] = 0; // no auth method
if(3 != write_n_bytes(sock, (char *) buff, 3))
goto err;
}
if(2 != read_n_bytes(sock, (char *) buff, 2))
goto err;
if(buff[0] != 5 || (buff[1] != 0 && buff[1] != 2)) {
if(buff[0] == 5 && buff[1] == 0xFF)
return BLOCKED;
else
goto err;
}
if(buff[1] == 2) {
// authentication
char in[2];
char out[515];
char *cur = out;
int c;
*cur++ = 1; // version
c = ulen & 0xFF;
*cur++ = c;
memcpy(cur, user, c);
cur += c;
c = passlen & 0xFF;
*cur++ = c;
memcpy(cur, pass, c);
cur += c;
if((cur - out) != write_n_bytes(sock, out, cur - out))
goto err;
if(2 != read_n_bytes(sock, in, 2))
goto err;
if(in[0] != 1 || in[1] != 0) {
if(in[0] != 1)
goto err;
else
return BLOCKED;
}
}
int buff_iter = 0;
buff[buff_iter++] = 5; // version
buff[buff_iter++] = 1; // connect
buff[buff_iter++] = 0; // reserved
if(!dns_len) {
buff[buff_iter++] = 1; // ip v4
memcpy(buff + buff_iter, &ip, 4); // dest host
buff_iter += 4;
} else {
buff[buff_iter++] = 3; //dns
buff[buff_iter++] = dns_len & 0xFF;
memcpy(buff + buff_iter, dns_name, dns_len);
buff_iter += dns_len;
}
memcpy(buff + buff_iter, &port, 2); // dest port
buff_iter += 2;
if(buff_iter != write_n_bytes(sock, (char *) buff, buff_iter))
goto err;
if(4 != read_n_bytes(sock, (char *) buff, 4))
goto err;
if(buff[0] != 5 || buff[1] != 0)
goto err;
switch (buff[3]) {
case 1:
len = 4;
break;
case 4:
len = 16;
break;
case 3:
len = 0;
if(1 != read_n_bytes(sock, (char *) &len, 1))
goto err;
break;
default:
goto err;
}
if(len + 2 != read_n_bytes(sock, (char *) buff, len + 2))
goto err;
return SUCCESS;
}
break;
}
err:
return SOCKET_ERROR;
}
#define TP " ... "
#define DT "Dynamic chain"
#define ST "Strict chain"
#define RT "Random chain"
static int start_chain(int *fd, proxy_data * pd, char *begin_mark) {
struct sockaddr_in addr;
char ip_buf[16];
*fd = socket(PF_INET, SOCK_STREAM, 0);
if(*fd == -1)
goto error;
pc_stringfromipv4(&pd->ip.octet[0], ip_buf);
proxychains_write_log(LOG_PREFIX "%s " TP " %s:%d ",
begin_mark, ip_buf, htons(pd->port));
pd->ps = PLAY_STATE;
memset(&addr, 0, sizeof(addr));
addr.sin_family = AF_INET;
addr.sin_addr.s_addr = (in_addr_t) pd->ip.as_int;
addr.sin_port = pd->port;
if(timed_connect(*fd, (struct sockaddr *) &addr, sizeof(addr))) {
pd->ps = DOWN_STATE;
goto error1;
}
pd->ps = BUSY_STATE;
return SUCCESS;
error1:
proxychains_write_log(TP " timeout\n");
error:
if(*fd != -1)
close(*fd);
return SOCKET_ERROR;
}
static proxy_data *select_proxy(select_type how, proxy_data * pd, unsigned int proxy_count, unsigned int *offset) {
unsigned int i = 0, k = 0;
if(*offset >= proxy_count)
return NULL;
switch (how) {
case RANDOMLY:
srand(time(NULL));
do {
k++;
i = 0 + (unsigned int) (proxy_count * 1.0 * rand() / (RAND_MAX + 1.0));
} while(pd[i].ps != PLAY_STATE && k < proxy_count * 100);
break;
case FIFOLY:
for(i = *offset; i < proxy_count; i++) {
if(pd[i].ps == PLAY_STATE) {
*offset = i;
break;
}
}
default:
break;
}
if(i >= proxy_count)
i = 0;
return (pd[i].ps == PLAY_STATE) ? &pd[i] : NULL;
}
static void release_all(proxy_data * pd, unsigned int proxy_count) {
unsigned int i;
for(i = 0; i < proxy_count; i++)
pd[i].ps = PLAY_STATE;
return;
}
static void release_busy(proxy_data * pd, unsigned int proxy_count) {
unsigned int i;
for(i = 0; i < proxy_count; i++)
if(pd[i].ps == BUSY_STATE)
pd[i].ps = PLAY_STATE;
return;
}
static unsigned int calc_alive(proxy_data * pd, unsigned int proxy_count) {
unsigned int i;
int alive_count = 0;
release_busy(pd, proxy_count);
for(i = 0; i < proxy_count; i++)
if(pd[i].ps == PLAY_STATE)
alive_count++;
return alive_count;
}
static int chain_step(int ns, proxy_data * pfrom, proxy_data * pto) {
int retcode = -1;
char *hostname;
char ip_buf[16];
PDEBUG("chain_step()\n");
if(pto->ip.octet[0] == remote_dns_subnet) {
hostname = string_from_internal_ip(pto->ip);
if(!hostname)
goto usenumericip;
} else {
usenumericip:
pc_stringfromipv4(&pto->ip.octet[0], ip_buf);
hostname = ip_buf;
}
proxychains_write_log(TP " %s:%d ", hostname, htons(pto->port));
retcode = tunnel_to(ns, pto->ip, pto->port, pfrom->pt, pfrom->user, pfrom->pass);
switch (retcode) {
case SUCCESS:
pto->ps = BUSY_STATE;
break;
case BLOCKED:
pto->ps = BLOCKED_STATE;
proxychains_write_log("<--denied\n");
close(ns);
break;
case SOCKET_ERROR:
pto->ps = DOWN_STATE;
proxychains_write_log("<--socket error or timeout!\n");
close(ns);
break;
}
return retcode;
}
int connect_proxy_chain(int sock, ip_type target_ip,
unsigned short target_port, proxy_data * pd,
unsigned int proxy_count, chain_type ct, unsigned int max_chain) {
proxy_data p4;
proxy_data *p1, *p2, *p3;
int ns = -1;
unsigned int offset = 0;
unsigned int alive_count = 0;
unsigned int curr_len = 0;
p3 = &p4;
PDEBUG("connect_proxy_chain\n");
again:
switch (ct) {
case DYNAMIC_TYPE:
alive_count = calc_alive(pd, proxy_count);
offset = 0;
do {
if(!(p1 = select_proxy(FIFOLY, pd, proxy_count, &offset)))
goto error_more;
} while(SUCCESS != start_chain(&ns, p1, DT) && offset < proxy_count);
for(;;) {
p2 = select_proxy(FIFOLY, pd, proxy_count, &offset);
if(!p2)
break;
if(SUCCESS != chain_step(ns, p1, p2)) {
PDEBUG("GOTO AGAIN 1\n");
goto again;
}
p1 = p2;
}
//proxychains_write_log(TP);
p3->ip = target_ip;
p3->port = target_port;
if(SUCCESS != chain_step(ns, p1, p3))
goto error;
break;
case STRICT_TYPE:
alive_count = calc_alive(pd, proxy_count);
offset = 0;
if(!(p1 = select_proxy(FIFOLY, pd, proxy_count, &offset))) {
PDEBUG("select_proxy failed\n");
goto error_strict;
}
if(SUCCESS != start_chain(&ns, p1, ST)) {
PDEBUG("start_chain failed\n");
goto error_strict;
}
while(offset < proxy_count) {
if(!(p2 = select_proxy(FIFOLY, pd, proxy_count, &offset)))
break;
if(SUCCESS != chain_step(ns, p1, p2)) {
PDEBUG("chain_step failed\n");
goto error_strict;
}
p1 = p2;
}
//proxychains_write_log(TP);
p3->ip = target_ip;
p3->port = target_port;
if(SUCCESS != chain_step(ns, p1, p3))
goto error;
break;
case RANDOM_TYPE:
alive_count = calc_alive(pd, proxy_count);
if(alive_count < max_chain)
goto error_more;
curr_len = offset = 0;
do {
if(!(p1 = select_proxy(RANDOMLY, pd, proxy_count, &offset)))
goto error_more;
} while(SUCCESS != start_chain(&ns, p1, RT) && offset < max_chain);
while(++curr_len < max_chain) {
if(!(p2 = select_proxy(RANDOMLY, pd, proxy_count, &offset)))
goto error_more;
if(SUCCESS != chain_step(ns, p1, p2)) {
PDEBUG("GOTO AGAIN 2\n");
goto again;
}
p1 = p2;
}
//proxychains_write_log(TP);
p3->ip = target_ip;
p3->port = target_port;
if(SUCCESS != chain_step(ns, p1, p3))
goto error;
}
proxychains_write_log(TP " OK\n");
dup2(ns, sock);
close(ns);
return 0;
error:
if(ns != -1)
close(ns);
errno = ECONNREFUSED; // for nmap ;)
return -1;
error_more:
proxychains_write_log("\n!!!need more proxies!!!\n");
error_strict:
PDEBUG("error\n");
release_all(pd, proxy_count);
if(ns != -1)
close(ns);
errno = ETIMEDOUT;
return -1;
}
// TODO: all those buffers aren't threadsafe, but since no memory allocation happens there shouldnt be any segfaults
static struct hostent hostent_space;
static in_addr_t resolved_addr;
static char *resolved_addr_p[2];
static char addr_name[1024 * 8];
static const ip_type local_host = { {127, 0, 0, 1} };
struct hostent *proxy_gethostbyname(const char *name) {
char buff[256];
uint32_t i, hash;
// yep, new_mem never gets freed. once you passed a fake ip to the client, you can't "retreat" it
void *new_mem;
size_t l;
struct hostent *hp;
resolved_addr_p[0] = (char *) &resolved_addr;
resolved_addr_p[1] = NULL;
hostent_space.h_addr_list = resolved_addr_p;
resolved_addr = 0;
gethostname(buff, sizeof(buff));
if(!strcmp(buff, name)) {
resolved_addr = inet_addr(buff);
if(resolved_addr == (in_addr_t) (-1))
resolved_addr = (in_addr_t) (local_host.as_int);
return &hostent_space;
}
memset(buff, 0, sizeof(buff));
while((hp = gethostent()))
if(!strcmp(hp->h_name, name))
return hp;
hash = dalias_hash((char *) name);
MUTEX_LOCK(&internal_ips_lock);
// see if we already have this dns entry saved.
if(internal_ips.counter) {
for(i = 0; i < internal_ips.counter; i++) {
if(internal_ips.list[i]->hash == hash && !strcmp(name, internal_ips.list[i]->string)) {
resolved_addr = make_internal_ip(i);
PDEBUG("got cached ip for %s\n", name);
goto have_ip;
}
}
}
// grow list if needed.
if(internal_ips.capa < internal_ips.counter + 1) {
PDEBUG("realloc\n");
new_mem = realloc(internal_ips.list, (internal_ips.capa + 16) * sizeof(void *));
if(new_mem) {
internal_ips.capa += 16;
internal_ips.list = new_mem;
} else {
oom:
proxychains_write_log("out of mem\n");
goto err_plus_unlock;
}
}
resolved_addr = make_internal_ip(internal_ips.counter);
if(resolved_addr == (in_addr_t) - 1)
goto err_plus_unlock;
l = strlen(name);
new_mem = malloc(sizeof(string_hash_tuple) + l + 1);
if(!new_mem)
goto oom;
PDEBUG("creating new entry %d for ip of %s\n", (int) internal_ips.counter, name);
internal_ips.list[internal_ips.counter] = new_mem;
internal_ips.list[internal_ips.counter]->hash = hash;
internal_ips.list[internal_ips.counter]->string = (char *) new_mem + sizeof(string_hash_tuple);
memcpy(internal_ips.list[internal_ips.counter]->string, name, l + 1);
internal_ips.counter += 1;
have_ip:
MUTEX_UNLOCK(&internal_ips_lock);
strncpy(addr_name, name, sizeof(addr_name));
hostent_space.h_name = addr_name;
hostent_space.h_length = sizeof(in_addr_t);
return &hostent_space;
err_plus_unlock:
MUTEX_UNLOCK(&internal_ips_lock);
return NULL;
}
int proxy_getaddrinfo(const char *node, const char *service, const struct addrinfo *hints, struct addrinfo **res) {
struct servent *se = NULL;
struct hostent *hp = NULL;
struct sockaddr *sockaddr_space = NULL;
struct addrinfo *addrinfo_space = NULL;
// printf("proxy_getaddrinfo node %s service %s\n",node,service);
addrinfo_space = malloc(sizeof(struct addrinfo));
if(!addrinfo_space)
goto err1;
sockaddr_space = malloc(sizeof(struct sockaddr));
if(!sockaddr_space)
goto err2;
memset(sockaddr_space, 0, sizeof(*sockaddr_space));
memset(addrinfo_space, 0, sizeof(*addrinfo_space));
if(node && !inet_aton(node, &((struct sockaddr_in *) sockaddr_space)->sin_addr)) {
hp = proxy_gethostbyname(node);
if(hp)
memcpy(&((struct sockaddr_in *) sockaddr_space)->sin_addr,
*(hp->h_addr_list), sizeof(in_addr_t));
else
goto err3;
}
if(service)
se = getservbyname(service, NULL);
if(!se) {
((struct sockaddr_in *) sockaddr_space)->sin_port = htons(atoi(service ? : "0"));
} else
((struct sockaddr_in *) sockaddr_space)->sin_port = se->s_port;
*res = addrinfo_space;
(*res)->ai_addr = sockaddr_space;
if(node)
strcpy(addr_name, node);
(*res)->ai_canonname = addr_name;
(*res)->ai_next = NULL;
(*res)->ai_family = sockaddr_space->sa_family = AF_INET;
(*res)->ai_socktype = hints->ai_socktype;
(*res)->ai_flags = hints->ai_flags;
(*res)->ai_protocol = hints->ai_protocol;
(*res)->ai_addrlen = sizeof(*sockaddr_space);
goto out;
err3:
free(sockaddr_space);
err2:
free(addrinfo_space);
err1:
return 1;
out:
return 0;
}