/*************************************************************************** core.c - description ------------------- begin : Tue May 14 2002 copyright : netcreature (C) 2002 email : netcreature@users.sourceforge.net *************************************************************************** * GPL * *************************************************************************** * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * ***************************************************************************/ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef THREAD_SAFE #include pthread_mutex_t internal_ips_lock; #endif #include "core.h" #include "common.h" extern int tcp_read_time_out; extern int tcp_connect_time_out; extern int proxychains_quiet_mode; extern unsigned int remote_dns_subnet; internal_ip_lookup_table internal_ips = { 0, 0, NULL }; uint32_t dalias_hash(char *s0) { unsigned char *s = (void *) s0; uint_fast32_t h = 0; while(*s) { h = 16 * h + *s++; h ^= h >> 24 & 0xf0; } return h & 0xfffffff; } uint32_t index_from_internal_ip(ip_type internalip) { ip_type tmp = internalip; uint32_t ret; ret = tmp.octet[3] + (tmp.octet[2] << 8) + (tmp.octet[1] << 16); ret -= 1; return ret; } char *string_from_internal_ip(ip_type internalip) { char *res = NULL; #ifdef THREAD_SAFE pthread_mutex_lock(&internal_ips_lock); #endif uint32_t index = index_from_internal_ip(internalip); if(index < internal_ips.counter) res = internal_ips.list[index]->string; #ifdef THREAD_SAFE pthread_mutex_unlock(&internal_ips_lock); #endif return res; } in_addr_t make_internal_ip(uint32_t index) { ip_type ret; index++; // so we can start at .0.0.1 if(index > 0xFFFFFF) return (in_addr_t) - 1; ret.octet[0] = remote_dns_subnet & 0xFF; ret.octet[1] = (index & 0xFF0000) >> 16; ret.octet[2] = (index & 0xFF00) >> 8; ret.octet[3] = index & 0xFF; return (in_addr_t) ret.as_int; } static const char base64[] = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"; static int poll_retry(struct pollfd *fds, nfds_t nfsd, int timeout) { int ret; int time_remain = timeout; int time_elapsed = 0; struct timeval start_time; struct timeval tv; gettimeofday(&start_time, NULL); do { //printf("Retry %d\n", time_remain); ret = poll(fds, nfsd, time_remain); gettimeofday(&tv, NULL); time_elapsed = ((tv.tv_sec - start_time.tv_sec) * 1000 + (tv.tv_usec - start_time.tv_usec) / 1000); //printf("Time elapsed %d\n", time_elapsed); time_remain = timeout - time_elapsed; } while(ret == -1 && errno == EINTR && time_remain > 0); //if (ret == -1) //printf("Return %d %d %s\n", ret, errno, strerror(errno)); return ret; } static void encode_base_64(char *src, char *dest, int max_len) { int n, l, i; l = strlen(src); max_len = (max_len - 1) / 4; for(i = 0; i < max_len; i++, src += 3, l -= 3) { switch (l) { case 0: break; case 1: n = src[0] << 16; *dest++ = base64[(n >> 18) & 077]; *dest++ = base64[(n >> 12) & 077]; *dest++ = '='; *dest++ = '='; break; case 2: n = src[0] << 16 | src[1] << 8; *dest++ = base64[(n >> 18) & 077]; *dest++ = base64[(n >> 12) & 077]; *dest++ = base64[(n >> 6) & 077]; *dest++ = '='; break; default: n = src[0] << 16 | src[1] << 8 | src[2]; *dest++ = base64[(n >> 18) & 077]; *dest++ = base64[(n >> 12) & 077]; *dest++ = base64[(n >> 6) & 077]; *dest++ = base64[n & 077]; } if(l < 3) break; } *dest++ = 0; } #define LOG_BUFF 1024*20 int proxychains_write_log(char *str, ...) { char buff[LOG_BUFF]; va_list arglist; FILE *log_file; log_file = stderr; if(!proxychains_quiet_mode) { va_start(arglist, str); vsprintf(buff, str, arglist); va_end(arglist); fprintf(log_file, "%s", buff); fflush(log_file); } return EXIT_SUCCESS; } static int write_n_bytes(int fd, char *buff, size_t size) { int i = 0; size_t wrote = 0; for(;;) { i = write(fd, &buff[wrote], size - wrote); if(i <= 0) return i; wrote += i; if(wrote == size) return wrote; } } static int read_n_bytes(int fd, char *buff, size_t size) { int ready; size_t i; struct pollfd pfd[1]; pfd[0].fd = fd; pfd[0].events = POLLIN; for(i = 0; i < size; i++) { pfd[0].revents = 0; ready = poll_retry(pfd, 1, tcp_read_time_out); if(ready != 1 || !(pfd[0].revents & POLLIN) || 1 != read(fd, &buff[i], 1)) return -1; } return (int) size; } static int timed_connect(int sock, const struct sockaddr *addr, socklen_t len) { int ret, value; socklen_t value_len; struct pollfd pfd[1]; pfd[0].fd = sock; pfd[0].events = POLLOUT; fcntl(sock, F_SETFL, O_NONBLOCK); ret = true_connect(sock, addr, len); #ifdef DEBUG if(ret == -1) perror("true_connect"); printf("\nconnect ret=%d\n", ret); fflush(stdout); #endif if(ret == -1 && errno == EINPROGRESS) { ret = poll_retry(pfd, 1, tcp_connect_time_out); #ifdef DEBUG printf("\npoll ret=%d\n", ret); fflush(stdout); #endif if(ret == 1) { value_len = sizeof(socklen_t); getsockopt(sock, SOL_SOCKET, SO_ERROR, &value, &value_len); #ifdef DEBUG printf("\nvalue=%d\n", value); fflush(stdout); #endif if(!value) ret = 0; else ret = -1; } else { ret = -1; } } else { if(ret != 0) ret = -1; } fcntl(sock, F_SETFL, !O_NONBLOCK); return ret; } #define INVALID_INDEX 0xFFFFFFFFU static int tunnel_to(int sock, ip_type ip, unsigned short port, proxy_type pt, char *user, char *pass) { char *dns_name = NULL; size_t dns_len = 0; PDEBUG("tunnel_to()\n"); // we use ip addresses with 224.* to lookup their dns name in our table, to allow remote DNS resolution // the range 224-255.* is reserved, and it won't go outside (unless the app does some other stuff with // the results returned from gethostbyname et al.) // the hardcoded number 224 can now be changed using the config option remote_dns_subnet to i.e. 127 if(ip.octet[0] == remote_dns_subnet) { dns_name = string_from_internal_ip(ip); if(!dns_name) goto err; dns_len = strlen(dns_name); if(!dns_len) goto err; } size_t ulen = strlen(user); size_t passlen = strlen(pass); if(ulen > 0xFF || passlen > 0xFF || dns_len > 0xFF) { proxychains_write_log(LOG_PREFIX "error: maximum size of 255 for user/pass or domain name!\n"); goto err; } int len; unsigned char buff[BUFF_SIZE]; //memset (buff, 0, sizeof(buff)); switch (pt) { case HTTP_TYPE:{ if(!dns_len) dns_name = inet_ntoa(*(struct in_addr *) &ip.as_int); snprintf((char *) buff, sizeof(buff), "CONNECT %s:%d HTTP/1.0\r\n", dns_name, ntohs(port)); if(user[0]) { #define HTTP_AUTH_MAX ((0xFF * 2) + 1 + 1) // 2 * 0xff: username and pass, plus 1 for ':' and 1 for zero terminator. char src[HTTP_AUTH_MAX]; char dst[(4 * HTTP_AUTH_MAX)]; memcpy(src, user, ulen); memcpy(src + ulen, ":", 1); memcpy(src + ulen + 1, pass, passlen); src[ulen + 1 + passlen] = 0; encode_base_64(src, dst, sizeof(dst)); strcat((char *) buff, "Proxy-Authorization: Basic "); strcat((char *) buff, dst); strcat((char *) buff, "\r\n\r\n"); } else strcat((char *) buff, "\r\n"); len = strlen((char *) buff); if(len != send(sock, buff, len, 0)) goto err; len = 0; // read header byte by byte. while(len < BUFF_SIZE) { if(1 == read_n_bytes(sock, (char *) (buff + len), 1)) len++; else goto err; if(len > 4 && buff[len - 1] == '\n' && buff[len - 2] == '\r' && buff[len - 3] == '\n' && buff[len - 4] == '\r') break; } // if not ok (200) or response greather than BUFF_SIZE return BLOCKED; if(len == BUFF_SIZE || !(buff[9] == '2' && buff[10] == '0' && buff[11] == '0')) return BLOCKED; return SUCCESS; } break; case SOCKS4_TYPE:{ buff[0] = 4; // socks version buff[1] = 1; // connect command memcpy(&buff[2], &port, 2); // dest port if(dns_len) { ip.octet[0] = 0; ip.octet[1] = 0; ip.octet[2] = 0; ip.octet[3] = 1; } memcpy(&buff[4], &ip, 4); // dest host len = ulen + 1; // username if(len > 1) memcpy(&buff[8], user, len); else { buff[8] = 0; } // do socksv4a dns resolution on the server if(dns_len) { memcpy(&buff[8 + len], dns_name, dns_len + 1); len += dns_len + 1; } if((len + 8) != write_n_bytes(sock, (char *) buff, (8 + len))) goto err; if(8 != read_n_bytes(sock, (char *) buff, 8)) goto err; if(buff[0] != 0 || buff[1] != 90) return BLOCKED; return SUCCESS; } break; case SOCKS5_TYPE:{ if(user) { buff[0] = 5; //version buff[1] = 2; //nomber of methods buff[2] = 0; // no auth method buff[3] = 2; /// auth method -> username / password if(4 != write_n_bytes(sock, (char *) buff, 4)) goto err; } else { buff[0] = 5; //version buff[1] = 1; //nomber of methods buff[2] = 0; // no auth method if(3 != write_n_bytes(sock, (char *) buff, 3)) goto err; } if(2 != read_n_bytes(sock, (char *) buff, 2)) goto err; if(buff[0] != 5 || (buff[1] != 0 && buff[1] != 2)) { if(buff[0] == 5 && buff[1] == 0xFF) return BLOCKED; else goto err; } if(buff[1] == 2) { // authentication char in[2]; char out[515]; char *cur = out; int c; *cur++ = 1; // version c = ulen & 0xFF; *cur++ = c; memcpy(cur, user, c); cur += c; c = passlen & 0xFF; *cur++ = c; memcpy(cur, pass, c); cur += c; if((cur - out) != write_n_bytes(sock, out, cur - out)) goto err; if(2 != read_n_bytes(sock, in, 2)) goto err; if(in[0] != 1 || in[1] != 0) { if(in[0] != 1) goto err; else return BLOCKED; } } int buff_iter = 0; buff[buff_iter++] = 5; // version buff[buff_iter++] = 1; // connect buff[buff_iter++] = 0; // reserved if(!dns_len) { buff[buff_iter++] = 1; // ip v4 memcpy(buff + buff_iter, &ip, 4); // dest host buff_iter += 4; } else { buff[buff_iter++] = 3; //dns buff[buff_iter++] = dns_len & 0xFF; memcpy(buff + buff_iter, dns_name, dns_len); buff_iter += dns_len; } memcpy(buff + buff_iter, &port, 2); // dest port buff_iter += 2; if(buff_iter != write_n_bytes(sock, (char *) buff, buff_iter)) goto err; if(4 != read_n_bytes(sock, (char *) buff, 4)) goto err; if(buff[0] != 5 || buff[1] != 0) goto err; switch (buff[3]) { case 1: len = 4; break; case 4: len = 16; break; case 3: len = 0; if(1 != read_n_bytes(sock, (char *) &len, 1)) goto err; break; default: goto err; } if(len + 2 != read_n_bytes(sock, (char *) buff, len + 2)) goto err; return SUCCESS; } break; } err: return SOCKET_ERROR; } #define TP " ... " #define DT "Dynamic chain" #define ST "Strict chain" #define RT "Random chain" static int start_chain(int *fd, proxy_data * pd, char *begin_mark) { struct sockaddr_in addr; *fd = socket(PF_INET, SOCK_STREAM, 0); if(*fd == -1) goto error; proxychains_write_log(LOG_PREFIX "%s " TP " %s:%d ", begin_mark, inet_ntoa(*(struct in_addr *) &pd->ip), htons(pd->port)); pd->ps = PLAY_STATE; memset(&addr, 0, sizeof(addr)); addr.sin_family = AF_INET; addr.sin_addr.s_addr = (in_addr_t) pd->ip.as_int; addr.sin_port = pd->port; if(timed_connect(*fd, (struct sockaddr *) &addr, sizeof(addr))) { pd->ps = DOWN_STATE; goto error1; } pd->ps = BUSY_STATE; return SUCCESS; error1: proxychains_write_log(TP " timeout\n"); error: if(*fd != -1) close(*fd); return SOCKET_ERROR; } static proxy_data *select_proxy(select_type how, proxy_data * pd, unsigned int proxy_count, unsigned int *offset) { unsigned int i = 0, k = 0; if(*offset >= proxy_count) return NULL; switch (how) { case RANDOMLY: srand(time(NULL)); do { k++; i = 0 + (unsigned int) (proxy_count * 1.0 * rand() / (RAND_MAX + 1.0)); } while(pd[i].ps != PLAY_STATE && k < proxy_count * 100); break; case FIFOLY: for(i = *offset; i < proxy_count; i++) { if(pd[i].ps == PLAY_STATE) { *offset = i; break; } } default: break; } if(i >= proxy_count) i = 0; return (pd[i].ps == PLAY_STATE) ? &pd[i] : NULL; } static void release_all(proxy_data * pd, unsigned int proxy_count) { unsigned int i; for(i = 0; i < proxy_count; i++) pd[i].ps = PLAY_STATE; return; } static void release_busy(proxy_data * pd, unsigned int proxy_count) { unsigned int i; for(i = 0; i < proxy_count; i++) if(pd[i].ps == BUSY_STATE) pd[i].ps = PLAY_STATE; return; } static unsigned int calc_alive(proxy_data * pd, unsigned int proxy_count) { unsigned int i; int alive_count = 0; release_busy(pd, proxy_count); for(i = 0; i < proxy_count; i++) if(pd[i].ps == PLAY_STATE) alive_count++; return alive_count; } static int chain_step(int ns, proxy_data * pfrom, proxy_data * pto) { int retcode = -1; char *hostname; PDEBUG("chain_step()\n"); if(pto->ip.octet[0] == remote_dns_subnet) { hostname = string_from_internal_ip(pto->ip); if(!hostname) goto usenumericip; } else { usenumericip: hostname = inet_ntoa(*(struct in_addr *) &pto->ip); } proxychains_write_log(TP " %s:%d ", hostname, htons(pto->port)); retcode = tunnel_to(ns, pto->ip, pto->port, pfrom->pt, pfrom->user, pfrom->pass); switch (retcode) { case SUCCESS: pto->ps = BUSY_STATE; break; case BLOCKED: pto->ps = BLOCKED_STATE; proxychains_write_log("<--denied\n"); close(ns); break; case SOCKET_ERROR: pto->ps = DOWN_STATE; proxychains_write_log("<--timeout\n"); close(ns); break; } return retcode; } int connect_proxy_chain(int sock, ip_type target_ip, unsigned short target_port, proxy_data * pd, unsigned int proxy_count, chain_type ct, unsigned int max_chain) { proxy_data p4; proxy_data *p1, *p2, *p3; int ns = -1; unsigned int offset = 0; unsigned int alive_count = 0; unsigned int curr_len = 0; p3 = &p4; PDEBUG("connect_proxy_chain\n"); again: switch (ct) { case DYNAMIC_TYPE: alive_count = calc_alive(pd, proxy_count); offset = 0; do { if(!(p1 = select_proxy(FIFOLY, pd, proxy_count, &offset))) goto error_more; } while(SUCCESS != start_chain(&ns, p1, DT) && offset < proxy_count); for(;;) { p2 = select_proxy(FIFOLY, pd, proxy_count, &offset); if(!p2) break; if(SUCCESS != chain_step(ns, p1, p2)) { PDEBUG("GOTO AGAIN 1\n"); goto again; } p1 = p2; } //proxychains_write_log(TP); p3->ip = target_ip; p3->port = target_port; if(SUCCESS != chain_step(ns, p1, p3)) goto error; break; case STRICT_TYPE: alive_count = calc_alive(pd, proxy_count); offset = 0; if(!(p1 = select_proxy(FIFOLY, pd, proxy_count, &offset))) { PDEBUG("select_proxy failed\n"); goto error_strict; } if(SUCCESS != start_chain(&ns, p1, ST)) { PDEBUG("start_chain failed\n"); goto error_strict; } while(offset < proxy_count) { if(!(p2 = select_proxy(FIFOLY, pd, proxy_count, &offset))) break; if(SUCCESS != chain_step(ns, p1, p2)) { PDEBUG("chain_step failed\n"); goto error_strict; } p1 = p2; } //proxychains_write_log(TP); p3->ip = target_ip; p3->port = target_port; if(SUCCESS != chain_step(ns, p1, p3)) goto error; break; case RANDOM_TYPE: alive_count = calc_alive(pd, proxy_count); if(alive_count < max_chain) goto error_more; curr_len = offset = 0; do { if(!(p1 = select_proxy(RANDOMLY, pd, proxy_count, &offset))) goto error_more; } while(SUCCESS != start_chain(&ns, p1, RT) && offset < max_chain); while(++curr_len < max_chain) { if(!(p2 = select_proxy(RANDOMLY, pd, proxy_count, &offset))) goto error_more; if(SUCCESS != chain_step(ns, p1, p2)) { PDEBUG("GOTO AGAIN 2\n"); goto again; } p1 = p2; } //proxychains_write_log(TP); p3->ip = target_ip; p3->port = target_port; if(SUCCESS != chain_step(ns, p1, p3)) goto error; } proxychains_write_log(TP " OK\n"); dup2(ns, sock); close(ns); return 0; error: if(ns != -1) close(ns); errno = ECONNREFUSED; // for nmap ;) return -1; error_more: proxychains_write_log("\n!!!need more proxies!!!\n"); error_strict: PDEBUG("error\n"); release_all(pd, proxy_count); if(ns != -1) close(ns); errno = ETIMEDOUT; return -1; } // TODO: all those buffers aren't threadsafe, but since no memory allocation happens there shouldnt be any segfaults static struct hostent hostent_space; static in_addr_t resolved_addr; static char *resolved_addr_p[2]; static char addr_name[1024 * 8]; static const ip_type local_host = { {127, 0, 0, 1} }; struct hostent *proxy_gethostbyname(const char *name) { char buff[256]; uint32_t i, hash; // yep, new_mem never gets freed. once you passed a fake ip to the client, you can't "retreat" it void *new_mem; size_t l; struct hostent *hp; resolved_addr_p[0] = (char *) &resolved_addr; resolved_addr_p[1] = NULL; hostent_space.h_addr_list = resolved_addr_p; resolved_addr = 0; gethostname(buff, sizeof(buff)); if(!strcmp(buff, name)) { resolved_addr = inet_addr(buff); if(resolved_addr == (in_addr_t) (-1)) resolved_addr = (in_addr_t) (local_host.as_int); return &hostent_space; } memset(buff, 0, sizeof(buff)); while((hp = gethostent())) if(!strcmp(hp->h_name, name)) return hp; hash = dalias_hash((char *) name); #ifdef THREAD_SAFE pthread_mutex_lock(&internal_ips_lock); #endif // see if we already have this dns entry saved. if(internal_ips.counter) { for(i = 0; i < internal_ips.counter; i++) { if(internal_ips.list[i]->hash == hash && !strcmp(name, internal_ips.list[i]->string)) { resolved_addr = make_internal_ip(i); PDEBUG("got cached ip for %s\n", name); goto have_ip; } } } // grow list if needed. if(internal_ips.capa < internal_ips.counter + 1) { PDEBUG("realloc\n"); new_mem = realloc(internal_ips.list, (internal_ips.capa + 16) * sizeof(void *)); if(new_mem) { internal_ips.capa += 16; internal_ips.list = new_mem; } else { oom: proxychains_write_log("out of mem\n"); goto err_plus_unlock; } } resolved_addr = make_internal_ip(internal_ips.counter); if(resolved_addr == (in_addr_t) - 1) goto err_plus_unlock; l = strlen(name); new_mem = malloc(sizeof(string_hash_tuple) + l + 1); if(!new_mem) goto oom; PDEBUG("creating new entry %d for ip of %s\n", (int) internal_ips.counter, name); internal_ips.list[internal_ips.counter] = new_mem; internal_ips.list[internal_ips.counter]->hash = hash; internal_ips.list[internal_ips.counter]->string = (char *) new_mem + sizeof(string_hash_tuple); memcpy(internal_ips.list[internal_ips.counter]->string, name, l + 1); internal_ips.counter += 1; have_ip: #ifdef THREAD_SAFE pthread_mutex_unlock(&internal_ips_lock); #endif strncpy(addr_name, name, sizeof(addr_name)); hostent_space.h_name = addr_name; hostent_space.h_length = sizeof(in_addr_t); return &hostent_space; err_plus_unlock: #ifdef THREAD_SAFE pthread_mutex_unlock(&internal_ips_lock); #endif return NULL; } int proxy_getaddrinfo(const char *node, const char *service, const struct addrinfo *hints, struct addrinfo **res) { struct servent *se = NULL; struct hostent *hp = NULL; struct sockaddr *sockaddr_space = NULL; struct addrinfo *addrinfo_space = NULL; // printf("proxy_getaddrinfo node %s service %s\n",node,service); addrinfo_space = malloc(sizeof(struct addrinfo)); if(!addrinfo_space) goto err1; sockaddr_space = malloc(sizeof(struct sockaddr)); if(!sockaddr_space) goto err2; memset(sockaddr_space, 0, sizeof(*sockaddr_space)); memset(addrinfo_space, 0, sizeof(*addrinfo_space)); if(node && !inet_aton(node, &((struct sockaddr_in *) sockaddr_space)->sin_addr)) { hp = proxy_gethostbyname(node); if(hp) memcpy(&((struct sockaddr_in *) sockaddr_space)->sin_addr, *(hp->h_addr_list), sizeof(in_addr_t)); else goto err3; } if(service) se = getservbyname(service, NULL); if(!se) { ((struct sockaddr_in *) sockaddr_space)->sin_port = htons(atoi(service ? : "0")); } else ((struct sockaddr_in *) sockaddr_space)->sin_port = se->s_port; *res = addrinfo_space; (*res)->ai_addr = sockaddr_space; if(node) strcpy(addr_name, node); (*res)->ai_canonname = addr_name; (*res)->ai_next = NULL; (*res)->ai_family = sockaddr_space->sa_family = AF_INET; (*res)->ai_socktype = hints->ai_socktype; (*res)->ai_flags = hints->ai_flags; (*res)->ai_protocol = hints->ai_protocol; (*res)->ai_addrlen = sizeof(*sockaddr_space); goto out; err3: free(sockaddr_space); err2: free(addrinfo_space); err1: return 1; out: return 0; }